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CMOS VCO and LNA Using Tuned-Input
Tuned-Output Circuits

Sudip Shekhar, Student Member, IEEE, Jeffery S. Walling, Student Member, IEEE,
Sankaran Aniruddhan, Member, IEEE, and David J. Allstot, Fellow, IEEE

Abstract—A tuned-input tuned-output (TITO) VCO utilizes
two resonant-tanks to achieve a low measured phase noise of
—130.5 dBc/Hz @ 1 MHz offset from 2.5 GHz center frequency.
Improvement in phase noise is achieved with comparable power
consumption and tuning range compared to a cross-coupled
VCO topology. A TITO cell similar to that in the VCO is used
as a common-source amplifier in a current-reuse configuration
cascaded with a g,,,-boosted common-gate amplifier to realize a
high gain (>20 dB), low power (2.7 mW) LNA. A technique to
improve the linearity of the current-reuse LNA is also presented.

Index Terms—Current reuse, linearity, low-noise amplifier, noise
figure, phase noise, tuned-input tuned-output, TITO, voltage-con-
trolled oscillator.

1. INTRODUCTION

HE voltage-controlled oscillator (VCO) and low-noise
Tampliﬁer (LNA), which are critical blocks in a CMOS
RF receiver, have attracted tremendous attention in the past
decade. Stringent adjacent channel suppression requirements
have driven VCO research towards the goal of extremely low
phase noise. Of course, the phase noise specification must be
met within a limited power budget, and using a nanometer
CMOS technology for its cost and scale-of-integration advan-
tages. A conventional CMOS cross-coupled VCO is a good
choice in terms of power dissipation, reliable start-up and
tuning range. However, its phase noise performance is not
adequate for demanding applications. For a low-noise ampli-
fier (LNA), which constitutes the first stage of a CMOS RF
receiver, high gain and low noise figure must also be achieved
with minimum power dissipation. The power consumption
constraint is especially severe in low-power portable receivers
and sensor-network applications. An inductively degenerated
common-source LNA (CSLNA) is attractive in terms of gain
and noise figure, but expensive in terms of power consump-
tion. A ¢,,-boosted common-gate LNA (CGLNA) draws less
current than its common-source counterpart, but offers only
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moderate gain; e.g., ~10 dB in a 0.18 pm CMOS process with
on-chip inductor Q ~10 [1]. Obviously, this is not sufficient for
applications where high gain (> 15 dB) is needed. Thus, there
is a need for an LNA architecture that realizes the high gain of
CSLNA with the low power of CGLNA.

An oscillator and amplifier share an important characteristic:
an amplifier can be configured to oscillate through positive feed-
back. Fig. 1 shows a common-source amplifier cell with two res-
onant circuits—inductors L4 and L, and capacitors Cy and Cj
comprise the drain and gate tanks, respectively, and C; is the
gate-drain capacitor. With proper biasing and sizing so that C's
is small, this cell acts as an amplifier. On the other hand, if C'¢
is designed to be larger, the same cell constitutes an oscillator
because the resultant positive feedback satisfies the necessary
conditions for oscillation. A tuned-input tuned-output (TITO)
oscillator that uses the amplifier cell in the positive feedback
regime is presented in Section II. The theory of operation is
presented, and expressions are derived for the frequency of os-
cillation, reliable start-up, and phase noise power spectral den-
sity. Section III introduces the design and implementation of a
TITO CMOS differential VCO [2]. In Section IV, the ampli-
fier cell of Fig. 1 is used as a current-reuse cascade stage in a
gm-boosted common-gate LNA [3]. The gain, noise figure, and
linearity of the so-called current-reuse LNA (IRLNA) are de-
rived in Section V. An improved version of IRLNA is proposed
in Section VI with enhanced linearity, the so-called EL-IRLNA.
Measurement results for the TITO-based VCO and LNA proto-
types are presented in Section VII, and conclusions are drawn
in Section VIII. Derivations for the general start-up and fre-
quency of oscillation characteristics for the VCO are presented
in Appendix A, and equations for IIP3 for a common-source
LNA are given in Appendix B.

II. TITO THEORY OF OPERATION

The amplifier cell of Fig. 1 forms the basis of the tuned-input
tuned-output CMOS oscillator, which is adapted from its clas-
sical tuned-grid tuned-plate counterpart [4]. The drain tank is
designed to behave inductively at the frequency of oscillation.
Consequently, the inductive load in conjunction with the action
of the feedback capacitor, Cf, forms the negative impedance
needed by the gate tank to initiate oscillation [5]. Next, the fre-
quency of oscillation and start-up condition for the TITO oscil-
lator are determined for the special case of identical tanks; i.e.,
Lqg=1Ly=1L,and Cqg = Cy = C,; the general case is treated
in Appendix A. InFig. 1, assume C, (Cy) includes Cys (Cys) of
M and other parasitic capacitances at the gate (drain) node, and

0018-9200/$25.00 © 2008 IEEE
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Fig. 1. Common-source nMOS tuned-input tuned-output (TITO) amplifier
cell.
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Fig. 2. (a) General representation of a feedback oscillator with the passive cir-
cuit represented as an ABCD matrix [6]. (b) Equivalent circuit for the TITO
oscillator.

C includes Cyq of M. The oscillation frequency, start-up con-
dition, and phase noise spectral density of the oscillator are de-
rived using the techniques of Nallatamby et al. [6]. Consider an
ABCD representation of a feedback oscillator [Fig. 2(a)] and an
equivalent circuit of the TITO oscillator [Fig. 2(b)]. The white
noise source, 1I,,, is the transistor noise, G,,, is the transconduc-
tance of the transistor, and G is the equivalent conductance of
both tanks. It is assumed that the (-factor of the tank is limited
by inductor losses only.

The ABCD coefficients are determined using nodal analysis

A::AR+jAI::<L+g%—tﬂéc?>—jw§? (1)
szBzz—in )
C=Cr+jCr=2G <1+g—;— w220f>
vi(weerenS - (2 (14 22) +2)
D = A. )

A. Frequency of Oscillation

The frequency of oscillation, wp, is obtained by setting
C](u)o) =0in (3) [6]
1 1

~ T+ (GLJ2Cy) \/I(C, + 2C;)

®)

wo
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For a parallel-resonant circuit, G = 1/w@L. It can be shown
that G*L/2C¢ < 1, and hence
1
Wy = ————, 6)
L(CU + QCf)

The frequency of oscillation in the case of unequal tank compo-
nents and neglecting the tank conductance is (Appendix A)

CotCy | CatCy \/ 407 (Cg+Cf _ Cd+cf)2
Lq L, LyL, Ly L,
wn =
0 2(CqCy 4 C;Cy + CyCo)
(N

B. Start-Up Condition

The start-up condition is given by —G,, = Cgr(wo) [6];
hence, from (3) and (6)

—2@. )

_Gm,min =

Thus, for reliable start-up, the small-signal transconductance of
the active device should exceed twice the conductance of the
tank at the frequency of oscillation.

For dissimilar tanks, the start-up condition is (Appendix A)

C 1
g =Gg 1+ =2 - ——
g d<+Cf szng>

Cy 1
+%@+E—EE@)(%

C. Phase Noise

Leeson’s model [7] predicts the phase noise of a single-res-

onator feedback network as
w 2
0
1 e
* (2QloadAw> ]

where Sagout and Sagin are the phase noise power spectral
densities of the output and input, respectively, at a frequency
offset, Aw, from the oscillation frequency, wg, and Q1,a4 is the
oscillator loaded (), which is, in general, different from the @) of
the passive tank circuit. Equation (10) is valid for all oscillators
if Qroaa is defined as [6]

SAgout = SAsin (10)

wo qu wo 1 dC[
on = |z = | == 11
@1oaa(wo) 2 |dwll|,, 2 |Cr dw ||, (D
For the TITO oscillator, (3) and (6) lead to

CI|W0 = -2G (12)

dCy G*’L

— = —4(2C Cy) |1 - —

dw ||, (207 + @) ( 40y >

~ —4(2C; 4+ C,). (13)

Substituting (12) and (13) into (11) with G = 1/wQL gives

wo 2(2C ¢ + C,
Quunalivo) = 222 )

= QWiL(2C; + C,) = Q.

Thus, the loaded @) of the TITO oscillator is identical to the
Q of the passive tank. Although the TITO VCO employs two

(14)
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Fig. 3. A fully differential CMOS TITO VCO.

resonant tanks, its phase noise dependence on () at an offset
frequency Aw is similar to that of other LC oscillators.

D. Tank Characteristics at wq

At the frequency of oscillation, the admittance of the drain
tank is

Ya(wo) = G~ ——2—
wolL (1 =+ 2d’f

)

=G — j2wCs.  (15)

Hence, as claimed earlier, the drain tank acts inductively at wy,
and its inductance is enhanced by (1 + C,/2C}). Clearly, it is
operating below its self-resonant frequency:
1 < 1
Wself =
T VIC, © JL(C, + 2Cy)

(16)

= Wwop.

The stand-alone gate tank shows the same behavior. However,
its enhanced inductance resonates with the effective feedback
capacitance (2C) at the oscillation frequency wq (6).

III. FULLY DIFFERENTIAL TITO VCO

A. Implementation and Design Tradeoffs

Two identical branches (Fig. 1) are connected at their source
nodes, and biased through an nMOS tail current source to
achieve a differential configuration (Fig. 3). The bias tail cur-
rent is set for optimum thermal and flicker-noise performance
and adequate output voltage headroom. Ly and Lg are imple-
mented as center-tapped symmetrical inductors, which saves
die area, simplifies layout, and increases the ) of the tanks.

The gate and drain tank capacitors are realized using iden-
tical varactors (C,). Fig. 4 plots the tuning range of the VCO
as the varactor control voltage is varied for three cases: 1) fixed
gate varactors and tuned drain varactors (6.95% tuning range);
2) fixed drain varactors and tuned gate varactors (7.35% tuning
range); and 3) both gate and drain varactors tuned together
(15.05% tuning range). Clearly, the overall tuning range is
highest when the drain tank is tuned along with the gate tank
over a range of frequencies.
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Fig. 4. Simulated tuning range plots for the TITO VCO. Tuning range is in-
creased when both tanks are tuned together rather than just gate- or drain-tuning
alone.

The choice of Cy is determined by a trade-off between the
overall tuning range and reliable start-up. A smaller C'; pro-
vides a wider tuning range (6), but a larger C'y ensures an easier
start-up (9). As a practical matter, C'y should be much larger
than the intrinsic gate-drain overlap capacitance (Cyq) of the
nMOS switching devices to ensure that the VCO characteristics
are independent of parasitic capacitance, which is critical for
robust operation with respect to process, voltage, and temper-
ature (PVT) variations. Herein, extrinsic MIM capacitances of
1 pF are added, which results in overall feedback capacitances
of Of = ng +1 pF.

Another design tradeoff exists among the power consump-
tion of the VCO, its start-up factor, and its output signal swing.
The switching transistors are sized for a start-up factor & 3; this
choice ensures reliable functionality with respect to PVT vari-
ations but costs more DC bias current. The sizes of the active
devices together with the magnitude of the DC tail current de-
termine the output signal swing and drain current noise. Care is
taken to avoid excessive signal swing, which leads to distorted
sinusoidal output voltage waveforms.

B. Phase Noise

Fig. 5 shows the simulated phase noise performance of the
TITO VCO at fy = 2.5 GHz along with that of a complemen-
tary cross-coupled VCO (CCC-VCO) with identical power con-
sumption, tuning range, and tank . The TITO VCO is superior
by 6.4 dBc at 100 kHz offset, and 5.6 dBc at 1 MHz offset be-
cause of its better impulse-sensitivity characteristic [5]. Fig. 6
shows the simulated drain voltage and current of M. Clearly,
most of the drain current flows only during the minimum of the
tank voltage, and as a consequence, most of the drain noise is
injected when the tanks are insensitive to noise perturbations.
From this viewpoint, a TITO VCO resembles a Hartley or Col-
pitts oscillator.

Fig. 7 shows the simulated phase noise of the TITO VCO
across its tuning range. Phase noise curves are also shown when
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Fig. 6. Simulated transient waveforms for the drain current and voltage at the
drain node of M.

only one of the tanks is tuned. The corresponding characteristic
for a CCC-VCO is also shown.

IV. CURRENT REUSE LNA

A. Previous Work

Designing a high-gain (> 15 dB) LNA in a single-stage
is challenging in fine-line CMOS because of the finite () of
on-chip inductors. It is relatively easy to realize moderate
gain (10-15 dB) in a CSLNA (compared to a CGLNA) at the
cost of increased power consumption and decreased stability.
However, the current-reuse LNA (IRLNA) offers a means to
obtain higher gain (> 15 dB) without these undesirable trade-
offs [8], [9]. An IRLNA usually comprises a cascade of two
amplifiers separated by a network that strategically redirects
the AC and DC currents. The DC current flows through both
stages (current-reuse) and the AC signal is amplified by both.
Previous implementations of IRLNA use a CS-CS cascade [8],
[9]; consequently, the limitations associated with a CS input
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Fig. 8. A ¢.-boosted common-gate common-source current reuse LNA
(IRLNA).

stage are incurred. Specifically, a high-@) input matching net-
work is needed to achieve good noise performance, which, in
turn, mandates either off-chip or large-area on-chip inductors.
Moreover, a high-@Q) input matching network is necessarily
narrowband and, therefore, susceptible to PVT variations, etc.
Finally, it is difficult to align the resonant frequencies of the
three high-Q) tanks, and the modest reverse isolation of CSLNA
adds to the design difficulty.

B. G,,-Boosting CG-CS IRLNA

A CGLNA exploits a simple (i.e., robust) broadband input
matching network [1]. Its reverse isolation and power consump-
tion are superior to its CSLNA counterpart, and g,,,-boosting
further improves its noise performance and power dissipation
[1]. To achieve high gain, a g,,-boosted CGLNA is cascaded
with a CSLNA in a current-reuse fashion as shown in Fig. 8.
The input signal is applied at the source of M; and also fed
out-of-phase to its gate by the transformer action of X5, which
increases its transconductance to (1 + A)g,, where —A is the
transformer gain [1]. The output of the CG stage is connected
to the input of the CS stage through a large coupling capacitor,
and an AC ground is realized at the source of M> using a large
bypass capacitor. Cy at the drain tank includes Cy, of Ms and
the parasitic capacitance of L4, C at the gate tank includes C'y,
of M and the parasitic capacitance of L,, and C'¢ (not shown)
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Fig. 9. Small-signal model of the IRLNA.

comprises Cgq of M,. Care is taken to size M, so that Cyq is
kept small. The gain, noise and linearity characteristics of the
gm-boosted IRLNA are presented in the next section.

V. THEORY OF OPERATION OF CURRENT REUSE LNA

A. Gain

A small-signal model of the current reuse amplifier is shown
in Fig. 9. The transformer, X, of Fig. 8 is replaced by an ideal
stage with a gain of —A, which is a valid approximation as-
suming its winding inductance resonates with the capacitance
at the source of M;. Using nodal analysis, the gain is

A, = _ngTd[gml(l + A)Tg + 1]
rgCy

2 _s 1 2 E 1
87+ rgCyg + CyLy 57+ raCa + CaLg

S
raCa

7)

As expected, the overall cascade amplifier response is the
product of second-order bandpass responses owing to the par-
allel resonant circuits at the drains of both stages. With wgg =
1/(LyCy),wiy = 1/(LaCa),woe/ Qg = 1/(r4Cy), woa/Qa =
1/(rqCyq), and DC gains of k1 = gmi(l + A)ry, + 1 and

k2 = gm2Td,
“og. wod.
N (Qg ) N (Qd )

s2+s(gﬂ)+w§ds2+s(%)+wgd

g

Ay = —k1ko

. (18)

Here,ry = r1||1/Gy,ma = 102||1/Ga, To1(r02) is the output
resistance of My (Ms), and G, (Gg) is the gate (drain) tank
conductance. Thus, the gain response is that of a fourth-order
filter. One concern for such a system is that the overall gain is
degraded if the resonant frequencies of the tanks are not prop-
erly aligned. Fortunately, this concern is mitigated by the rela-
tively low small-signal output resistance of the transistors; as a
consequence, the () is typically ~ 3-6 so that the gain degrada-
tion is less than ~ 1 dB even for a 5% misalignment in resonant
frequencies.

B. Noise

Noise analysis is accomplished by first analyzing the indi-
vidual noise performances of the CG and CS stages. For an
input-matched g,,-boosted CG stage, the noise factor, F', is
given by [1]

Feg =1+

Tt (w )2 (L 2k r7) (19)

—_ + JE— JR—

al+nk  5m \wr (1+ nk)®
where «, +y, and § are empirical device parameters and m = 1/
(gm1Rs). It appears from (19) that optimum noise performance
is achieved with the turns-ratio, n, optimized for a given cou-
pling factor, k. As a practical matter, however, nearly optimum
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noise performance is attained for a transformer with n = 1; this
design choice avoids the complexity associated with the design
and layout of non-unity transformers. For an n = 1 transformer
with coupling factor k£ = 0.7, the noise factor simplifies to

2
FCGz1+ﬂ+6—O‘<i> . (20)

1.7 2 \wr
For a CS stage without inductor degeneration, the noise factor
is

1)
wr
where m = 1/(gmarq). The similarity of (20) and (21) is due to
the absence of the (J-enhancement associated with the popular
inductor-degenerated CSLNA.

The familiar Friis formula is used to calculate the total noise
figure for the system [10]

(Fes — 1)

22
Ay ca (22

Feg-cs = Fog +
Because the gain of the common-gate stage is relatively large,
the input-referred noise contribution from the CS stage is in-
significant; in other words, the absence of ()-enhancement does
not significantly degrade the noise performance of the cascaded
amplifier.

C. Linearity

A general limitation of current reuse topologies is that the
current in the CS cascade stage is set by the input stage. If cur-
rent consumption is low as desired of current reuse LNAS in the
first place, linearity of the CS stage is poor. Using the direct
distortion calculation method of Wambacq, et al. [11], a simple
approximation for IIP3 of a CS stage is found (Appendix B)

4| gm
P3 = /=
\/3‘K3gm

where g,,, is the small-signal transconductance of the amplifier
and K3, is the second derivative of the small-signal transcon-
ductance with respect to input voltage. The frequencies w; and
wy represent the two tones that would be applied in a two-tone
test. A small bias current gives a small g,,, which, in turn, re-
stricts linearity. The gain of the first stage should be large to min-
imize the noise contribution of the second stage. Consequently,
the overall linearity of the amplifier is limited by the linearity of
the second CS stage.

A CG input stage is usually biased at a low DC current due
to impedance matching requirements. Although desirable from
a power dissipation standpoint, it implies that the CS stage will
have poor linearity. Hence, the overall linearity of a CG-CS cas-
cade is relatively poor.

(23)

wlecg

VI. AN ENHANCED-LINEARITY CURRENT REUSE LNA

Linearity of the IRLNA is modest owing to constraints on
bias currents and power dissipation. Equation (23) suggests that
linearity is improved with higher transconductance, which is
achieved with a higher bias current in the CS transistor. To this
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Fig. 11. Simulated ITP3 versus additional bias current for the EL-IRLNA.

end, the technique depicted in Fig. 10 is proposed to increase
linearity wherein M3 augments the bias current previously pro-
vided by M; only. With proper design, this topology remains
more power efficient than a basic cascade amplifier because a
significant fraction of the bias current is still reused.

There is a distinct tradeoff between additional bias current
and linearity. Fig. 11 plots simulated IIP3 of the enhanced-lin-
earity current reuse LNA (EL-IRLNA) as a function of addi-
tional bias current. Linearity improves as the additional bias
current is increased, but eventually begins to saturate for large
values. This is due to the increased voltage drop between the
gate and source of M, with increased additional bias current;
i.e., as Vs aro is increased, the drain voltage of the CG stage is
reduced, which leads to a reduced swing in the CG stage. Based
on these simulations, the bias current through M3 is chosen to
be 2 mA, bringing the total current consumption to 3.5 mA. The
simulated gain and noise figure characteristics of the EL-IRLNA
and IRLNA circuits are plotted in Fig. 12 and the return losses
are presented in Fig. 13. At a center frequency of 5.6 GHz, the
IRLNA achieves a gain of 19 dB, while the EL-IRLNA achieves
a gain of 20.3 dB. Both amplifiers achieve a 2.6 dB noise figure.
Hence, for a supply current increase of 2 mA, the overall lin-
earity is improved by about 6 dB.
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VII. MEASUREMENT RESULTS

The tuned-input tuned-output VCO (Fig. 3) and the
gm-boosted current-reuse LNA (Fig. 8) are fabricated in a
six-metal 0.18 pm CMOS RF process. Both circuits are wafer
probed on a Cascade probe station. Fig. 14 shows die micro-
photographs of the two circuits.

An on-chip differential amplifier buffer [2] is used in testing
the VCO at a center frequency of 2.5 GHz. An Agilent E4446A
spectrum analyzer with a phase noise personality is used for
VCO measurements. Fig. 15 shows a measured tuning plot of
the VCO wherein the oscillation frequency varies from 2.34 to
2.72 GHz as the control voltage (V.;) changes from 0 to 2.5 V;
the tuning range is 15.3%.

The measured phase noise spectral density (Fig. 16) of the
VCO at 2.5 GHz is —110 dBc/Hz and —130.5 dBc/Hz at
100 kHz and 1 MHz offset frequencies, respectively. Beyond
the offset frequency of 3 MHz, the measurement noise floor of
the spectrum analyzer is approached and the measurement is no
longer accurate. The spurs in the phase noise measurement are
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Fig. 15. Measured tuning range of the TITO VCO.

attributed to the measurement setup, and have been observed in
the measurement of other VCOs in a similar setup [1].
A VCO figure-of-merit (FOM) is commonly defined as

FOM = 10log;, (Af L{Af}PDC,mVV

] (24)

where A f is the offset frequency from the operating frequency,
fo. L(Af) is the phase noise power spectral density at this
offset frequency, and Ppc mw is the power dissipation in mW.
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Fig. 17. Measured phase noise power spectral density at a 1 MHz offset fre-
quency and the output signal power across the tuning range of the TITO VCO.

With a current consumption of 7.5 mA from a 1.8 V supply,
and a tank () of ~ 11, the CMOS TITO VCO achieves FOM =
187.2 dBc/Hz.

Fig. 17 plots the measured phase noise spectral density of the
VCO at 1 MHz offset across its tuning range. The output power
level is also shown.

The gain (S21) of the g,,-boosted current-reuse LNA varies
as a function of bias conditions. The quality of the input match
also depends on the bias current; hence, the gate voltage of the
input CG stage is set to maintain reasonable S1; < —10dB. The
gate voltage of the output CS stage is set high enough to keep
the CG stage in saturation. Measured S2; values for four dif-
ferent bias conditions vary from 14-21 dB as shown in Fig. 18.
When biased for maximum and minimum gains, the LNA draws
1.5 and 0.8 mA, respectively, from a single 1.8 V power supply.
The input match is maintained for the full-range of gain settings
with S11 < —10 dB across the frequency band of operation.
The measured input return loss and voltage gain for the max-
imum gain setting are plotted in Fig. 19. The noise figure (NF)
of the LNA is measured using an Agilent N§975A Noise Figure
Analyzer; it is shown for the maximum gain mode in Fig. 20.
Finally, the measured OIP3 = —2 dBm characteristic is plotted
for the high gain mode in Fig. 21.
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IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 5, MAY 2008

"
o
..--":o”
o
P\ o’
-10 ¥

---"'-- v’

Pout (dBm)
A
o
\.

Pl

-50
/‘,

-50 45 40 35 -30 25 -20
Pin (dBm)

Fig. 21. Measured IM3 for IRLNA in the maximum gain setting.

VIII. CONCLUSION

A common-source amplifier can be configured as an oscil-
lator or an LNA. Configured as an oscillator, a tuned-input
tuned-output fully differential VCO in 0.18 pym CMOS is
presented that has comparable tuning range and power con-
sumption to cross-coupled VCOs, and superior phase noise
performance. Hence, the TITO topology is an excellent de-
sign choice if phase noise is a key consideration, and the
area overhead of an extra spiral inductor is tolerable. Config-
ured as a common-source LNA, a current reuse ¢,,-boosted
common-gate common-source cascaded LNA is presented that
has comparable gain and noise performance to other high-gain
LNAs with lower power consumption. It is an excellent design
choice for low-power applications with somewhat relaxed
linearity requirements. A modification to the LNA achieves
enhanced linearity.

APPENDIX A

The frequency of oscillation and start-up condition for the
TITO VCO with dissimilar tank circuits are derived by first cal-
culating the admittances at the three nodes in Fig. 1

Yf = jBf = ijf (A—l)
1
Y =Gy+jB;=Gg+3 (ng - —) (A-2)
wL,
1
Yd:Gd-l-de:Gd-l-j(wC ——). (A-3)
de
Kirchhoff’s phasor nodal equations yield [4]
(Ve = Va)Ye+ V.Y, =0 (A-4)
(Vd — Vg)Yf +VaYgq + ngg =0. (A-5)
Solving (A-4) and (A-5) gives
Yng + Yng +YaYr+9nYe=0. (A-6)
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Fig. 22. Small-signal model for calculating third-order intermodulation
distortion.

Considering the imaginary part of (A-6) and assuming the @ of
the inductors is fairly high gives

1,1
By | By

1

GGy _

= Ty A7
B, DBuBsB, A7)

Thus, the reactive elements comprise a resonant loop at the fre-

quency of oscillation. Hence, using (A-3), (A-5), and (A-7), the

oscillation frequency is obtained as in (7). Considering the real
part of (A-6)

B By

—gm=Gq |1+ =L Gy |1+ =

J d<+Bf>+ g<+Bf>

1

(A-8)
which is the same as (9).

APPENDIX B

The linearity of a common-source amplifier with a tuned
output is derived using Volterra analysis. First, the admittance
matrix for the CS amplifier in Fig. 22 (ignoring K34, ) is found
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With the admittance matrix known, the first-order Volterra
kernel, Hy, is found as

Y-H=In (B-2)
!
In = 0 (B-3)
r 1
— 0
51Cy 1
Hl = _ 2711[1 s1L - |:0:|
L Cg(1+slgL+s§cL) 1+s1gL+s2CL
r 1
51Cy H
= e = { H”} : (B-4)
Cg(1+51gL+s§CL) 12

The matrix In represents the input stimulus, which is the voltage
applied to the gate of the CS stage; Hi, represents the linear
transfer function of the system.

Next, the system of Fig. 22 is solved for the third-order re-
sponse, this time with the gate shorted to ground and including
K3gm. The third-order Volterra kernel, H3, is determined as
shown in (B-5) and (B-6), at the bottom of the page. H32 repre-
sents the third-order transfer function of the system. The third-
order intermodulation product, IM3, is then calculated

H32

§ AZ°
4 H12 ’
With s; = jwi, $2 = jwi, and s3 = —jws, the third-order
modulation term becomes (B-8), also shown at the bottom of the
page. To simplify the calculation, the output inductor is assumed
large, and the output capacitor is assumed small. This enables
insight into the linearity as a function of the DC conditions as

3 K3gm 1 2
4 gm w1w2Cg2

IM; = (B-7)

IMs =

(B-9)

Finally, to find the intercept point, A is determined for IM 3 = 1

4 gm
to be Apg = (| ==Ly, C2 (B-10)
3 K3gm
v — sCy 0 B-1
| gm % : (B-1) which is the same result as seen in (23).
I 0
In=| Ksym (B-5)
L 51523303
r 1
s 0 0
el 0 1]
| ~ C,(1+sgL+s2CL) 1I+sgL+s2CL s15253C7
r 0
= (s1+s2+453)LK3gm :| = |:H31:| (B'6)
L (1+(s1+sz+53)9L+(Si+5§+5§)01‘+(5152""51S3+5253)2CL)515253C»§ Has
3 C
IM; = 5 —% 42\ /(1 - 23CL + wig?L? + wiC2L2)
4 gm L
2
« (—w2+2w1) LzK??gm

CSwiws (1— (4w? + w2 +4w1ws ) 20 L+ (wh 424w w2 — 8wdw + 16w —32wdws) (CL)? + (4w? — 4wy wo +w3) (gL)2)

(B-8)
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