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Abstract: Recent investigations in neuromorphic photonics exploits photonics for neu-
ron models. Here, we experimentally demonstrate a silicon photonic chip that can perform
training and testing of a Hopfield network to reconstruct corrupted input patterns. © 2021
The Author(s)

1. Introduction

One of the primary bottlenecks of digital implementations of perceptron-based neural networks is efficiently com-
puting the matrix multiplications required for training and inference [1]. Perceptrons encompass the most general
functions of biological neurons, which can be summarized as weighted-additions nonlinearly transformed by ac-
tivation functions [2]. Weighted-additions also represent the core operation for dot products between matrices.
Therefore, dedicated hardware accelerators for perceptron-based neural networks would be designed to perform
weighted-additions through operations between matrices.

Dedicated analog hardware for artificial neural networks (ANNSs) is expensive if we consider that modern deep
networks sizes scale up to thousands (or millions) of neurons to solve Al related tasks. In order to overcome such
challenge, the high speed and parallelism that analog photonic systems can achieve makes them natural candidates
for efficient brain-inspired computing [3].

In this work, we present a photonic integrated circuit able to perform online training and testing based around
matrix multiplications. A perceptron-based Hopfield ANN will be trained and tested for a pattern reconstruction
task [4]. The task consists in training and testing this recurrent network three times to recognize three different
corrupted patterns. These patterns are represented as 4 x 4 matrices that model the image of numbers 0, 1 and 2
with some defects. Due to their speed, energy efficiency and reconfigurability, such matrix multiplications will be
performed using photonic devices. In particular, we consider the use of the broadcast-and-weight protocol (BWP)
which uses micro ring-resonators (MRRs) to directly encode different matrix elements as amplitude values in
parallel optical channels [5].

A Lasers 0% Weight bank AF T (a)
1 50% C DROP Power
meter
A s0% THRU PC
3 Optical
50% Voltage source < |
Ay Electrical

Fig. 1. Schematic illustration of the photonic vector dot product architecture between vectors A and
B.



SM1B.5.pdf CLEO 2021 © OSA 2021

Activation
) (0] Utp ut
functions (a)
M . | 1.0
oo 0.4 0
c 0.6
'E 0.3
E 02 | = 0.0 =
—
+ 01 -0.6
o0 -3 -29
0.4 0.9
oo
= 03 0.6
E 0.2 =
9] ‘™03
+ 0.1
00 0.0
-31 -30

Fig. 2. (a) Training and (b) testing stages of the Hopfield network to memorize and reconstruct
image 0, respectively.

2. Photonic Hopfield neural network

A hopfield architecture is a recurrent neural network typically used as an associative memory [6]. Hopfield’s
network memory property allows for pattern reconstruction of faulty datasets. In this work, only one pattern will be
stored in memory. Therefore, for this particular task a weight matrix W can be estimated by multiplying every input
pattern X with itself (W = x” - x, where T is the transpose function). In the inference stage we multiply a corrupted
image y by the weight matrix W, and apply a sign activation function to that result, obtaining O = sign(y-W). The
results of such experiments are determined by the estimation of the mean absolute error (MAE).

As the operations described above are based on dot products between vectors containing four elements each, we
will demonstrate that such operations can be performed using a bank of four on-chip silicon MRRs. Let us define
two vectors {A, B} that will represent any theoretical set of vectors considered in the forthcoming experimental
dot products (A -B). In Fig. 1, the elements of such vectors are experimentally represented. To encode elements of
the vector A, we vary the power intensity P; (with i = 1,2,3,4) of four tunable lasers. The elements of the second
vector B are implemented by four on-chip add-drop MRRs, when the waveguide refractive index by means of an
applied voltage V; is tuned.

Training and testing the Hopfield network to recognize one pattern x at a time requires the estimation of a
weight matrix W through the dot product between input matrices x” - x. In Fig. 2(a), we show an example of how
to estimate the weight matrix (output) for an image of number zero, using lasers encoding x” and MRRs encoding
x. Figure 2(b), shows the result of testing (output) for an image of number zero, using lasers encoding y and MRRs
encoding W. Post-processed weight and output matrices reached accuracies for over 85.6% not only for image
zero, but also for image of numbers one and two. In the case of number zero, the accuracies were 100%.

3. Conclusion

We have shown that MRR-based photonic integrated circuits can implement training and inference stages of
a Hopfield network for pattern reconstruction, based on experimental vector operations. The reconfigurability
feature of our photonic circuits allowed for the design of a special-purpose analog Hopfield network.
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