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ABSTRACT
One of the significant challenges in neuromorphic photonic architectures is the lack of good tools to simulate large-scale photonic integrated
circuits. It is crucial to perform simulations on a single platform to capture the circuit’s behavior in the presence of both optical and electrical
components. Here, we adopted a Verilog-A based approach to model neuromorphic photonic circuits by considering both the electrical and
optical properties. Verilog-A models for the primary optical devices, such as lasers, couplers, waveguides, phase shifters, and photodetectors,
are discussed, along with studying the composite devices such as microring resonators. Model parameters for different optical devices are
extracted and tuned by analyzing the measured data. The simulated and experimental results are also compared for validation of Verilog-A
models. Finally, a single photonic neuron circuit is simulated by implementing input, weight, and non-linear activation function by using
lasers, microring resonators, and modulator, respectively. Electro-optical rapid co-simulation would significantly improve the efficiency of
optimizing the devices and provide an accurate simulation of the circuit performance.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079984

I. INTRODUCTION

The architecture of conventional computers is based on a
separate memory and processor, which is not well suited for mas-
sively parallel and distributed computational models such as neural
networks for machine learning.1 The rise in machine learning appli-
cations and the availability of larger datasets have motivated the
investigation of new computing architectures that can solely be ded-
icated to performing complex calculations at a much higher speed
than conventional computers or graphics processing units (GPUs).
Neuromorphic engineering attempts to implement neural networks
directly on hardware that reflects their massively distributed nature
for improved computational efficiency. Recent advances in inte-
grated photonic neuromorphic architectures promise to deliver
computations with higher speed (higher bandwidth and lower

latency) than electronics by exploiting the parallel nature of light
through wavelength-division multiplexing (WDM) and the passive
nature of optical waveguides.1,2

For a successful experimental demonstration of a large-scale
neuromorphic photonic integrated circuit (PIC), it is imperative to
first simulate the PIC by capturing the underlying physics of the
individual devices and their interactions and predict the system
behavior in the presence of an external stimulus, namely, electri-
cal and optical signals. Before fabricating the PIC, the circuit-level
simulations need to predict the system response.

PICs have both photonic and electronic devices, which are
heterogeneously or monolithically integrated, including packag-
ing components (e.g., wire bonds, transmission lines, and bias-
ing circuits). Therefore, it is critical to perform an electro-optical
co-simulation that could also simulate non-ideal effects, such as
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parasitics and noise. Different kinds of commercial software are
available to simulate photonic devices at the physical level such as
Ansys Lumerical FDTD,3 MEEP,4 MODE,5 etc. Most of these pho-
tonic software are based on finite-difference time-domain (FDTD)
methods that allow the maximum of detail to be captured, but are
time-consuming and computationally expensive when dealing with
larger scale networks. Circuit level simulators, such as Ansys Lumer-
ical INTERCONNECT,3 primarily offer photonic device modeling
with minimal electronics. INTERCONNECT offers interoperability
with SPICE-level simulators using the Cadence-INTERCONNECT
co-simulation environment, where the electrical circuit is simulated
in Cadence Spectre and the optical circuit is simulated in INTER-
CONNECT. In every time step, Spectre and INTERCONNECT
communicate data bidirectionally between the electrical and opti-
cal domains. This makes it significantly slower than an electronic
design automation (EDA)-only simulation with Verilog-A models
for the photonic components. When working with feedback systems,
such as continuous-time recurrent neural networks (CTRNNs), and
reservoir computing,6 where the outputs depend on the history of
inputs and time dynamics plays an essential role in achieving a
specific task such as quadratic programming (QP),7 chaos gener-
ation,8 long short-term memory (LSTM),9 etc., it becomes crucial
to perform any co-simulation on the same platform. Instead of
dealing with complex FDTD calculations, an efficient approach is
to work with compact models (accurate, computationally efficient,
and easy for parametric extraction) of photonic devices, which can
provide maximum detail and incorporate the physics behind the
devices.

In this paper, we adopt a Verilog-A based approach10–17 that is
capable of performing electro-optical co-simulation for neuromor-
phic architectures. Verilog-A is a time-domain modeling language
for analog circuits. It inherently supports the electrical compo-
nents and is easily scalable to perform simulations with larger
networks. Representing photonic devices would require compact
models of each device presented in this paper. The simulations can
be performed in the general Verilog-A supported electronic design
automation (EDA) tool, such as Cadence Virtuoso, which enables
AC, DC, time-domain, and stability analysis on the same platform.
Verilog-A is popularly used for simulating CMOS electrical models
and, thus, opens the scope of CMOS-enabled neuromorphic electro-
optical architecture simulations. Furthermore, this approach can be

easily extended to simulate larger networks with multiple neurons
and layers, such as convolutional neural networks (CNNs),18 and
study hierarchical and complex photonic networks.19,20

II. INTEGRATED PHOTONIC NEURON
Artificial neural networks (ANNs) are widely used in model-

ing non-linear processing and performing various machine learning
tasks, such as face recognition, pattern detection, anomaly detec-
tion, natural language processing (NLPs), etc.21 The basic building
block of an ANN is a neuron. Each neuron in a network performs
two operations: a linear operation consisting of a weighted sum,
i.e., element-wise multiplication of inputs with weights before being
summed and followed by a non-linear unit that applies an activation
function to the weighted sum, yielding the output of the neuron. The
neuron’s output becomes an input to the neurons in the next layer
or to itself in some networks with recurrent connections. Therefore,
implementing an ANN on hardware requires the isomorphism of
the neuron on the hardware substrate. The physical dynamics (how
system behavior changes over time) governing the hardware system
should perform the neuron computations to represent a network
correctly.

In photonics, the integration of different optical devices and
electrical components provides a way to represent an artificial neu-
ron. While there are several ways to achieve neuron isomorphism
in photonics, we focus on photonic neurons that are implemented
in silicon photonics using multi-wavelength tunable filters as synap-
tic weights and electro-optic nonlinearity. Specifically, the building
blocks of such an integrated photonic neuron are shown in Fig. 1,
including microring resonator weight bank, a balanced photode-
tector for weighted summing, and a microring modulator for the
non-linear activation function.8,22 The input values to the network
are encoded as different wavelength laser powers. The weighting
operation from one layer to another is performed by using tunable
add–drop microring resonators. Each microring of the weight bank
on a photonic neural network acts as a weight. Different weight val-
ues are encoded by shifting the resonance wavelength of the ring
resonator. The shift in resonance wavelength is done by changing
refractive index neff of the silicon microring resonator by applying
an external effect, such as thermo-optic effect, plasma dispersion

FIG. 1. Schematic of a photonic neuron with inputs encoded as different wavelength laser powers, tunable microring weight bank for weighting, photodetectors as summation
operation, and modulator as non-linear activation function.19
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effect, absorption effects, etc. The summation operation is per-
formed by photodetectors that output the current proportional to
the sum of different wavelength laser powers. Having photodetec-
tors in a balanced (push–pull or series) configuration and enabling
microring resonators at critical coupling provides a way to encode
positive and negative weight values.20 The output current from
balanced photodetectors is converted to a voltage by using a tran-
simpedance amplifier (TIA). The non-linear activation function is
implemented by a PN/PIN junction-based microring modulator that
is driven by the output voltage from the TIA. The transfer functions
of the microring modulator can represent the predominant activa-
tion functions used in neural network, such as rectified linear units
(ReLU), sigmoidal, quadratic, etc.22

III. METHODOLOGY
The methodology of our work is based on representing optical

signal as an analytic signal by using electric field representation of
light.10,11 As Verilog-A does not support complex numbers, the opti-
cal signals propagate as real and imaginary parts of the electric field
carrying information about the magnitude and phase of the elec-
tric field. The information about the wavelength of the light can be
represented in two ways.10,11,23 The first method10,11 is based on the
oscillating electric field signal where the frequency of the oscillation
defines the wavelength of the light. It includes defining light source’s
reference frequency (THz) and working within the bandwidth of
interest. Depending on the application, the optical bandwidth can
range from 100 GHz to a few THz above the reference frequency.
However, working at higher frequencies (>2 THz) requires mini-
mal time and takes an extremely long time to run the simulation.
To counter this problem, the second method23 includes defining the
wavelength of the light as an explicit signal that passes across all
the devices. This enables simulating a wide bandwidth range of fre-
quency and faster run-time. In the case of photonic neuromorphic
architectures, the bandwidth of interest is within the free spectral
range (FSR) of the microring resonator, which is of the order of 2–3
THz, thus making the second method suitable for the simulations.
All the simulations performed in this paper are based on the second
approach, where the wavelength of the light is defined as a separate
signal from the light source, along with real and imaginary parts of
the electric field.

Devices such as microring resonators and Mach-Zehnder inter-
ferometer (MZI) are modeled by combining different essential com-
ponents such as waveguides, couplers, phase shifters, etc. Thus, we
do not require any explicit model to define composite devices.10

IV. VERILOG-A MODELS AND SIMULATION
OF PHOTONIC DEVICES

The fundamental photonic devices in neuromorphic comput-
ing are lasers, waveguides, couplers, splitters, combiners, and pho-
todetectors. The Verilog-A models for each device are based on the
circuit models10,12–14,24 that are described next.

The laser is modeled as a continuous wave (CW) light
source.10,11 The laser model is defined by the power and wavelength
of laser light, as shown in Fig. 2(a). The voltage value P at the input
port represents the power of the light in Watts and is proportional to
the magnitude of the electric field amplitude. The wavelength of the
light is defined as an independent parameter that can be adjusted
according to the simulation. The output of the laser includes three
signals: (1) the real part of the electric field (Ereal), (2) the imaginary
part of the electric field (Eimg), and (3) the wavelength of the light
(Eλ). The magnitude and phase of the electric field keep changing
while propagating through various optical devices according to the
physical equations governing the devices, thus changing the real and
imaginary electric field signals. However, the wavelength of the sig-
nal remains conserved along with all the devices. The initial phase
θphase(0) of the electric field at the source is defined as zero at the
start of the simulation,10

Ereal < 0 > = Emag cos(θphase) = Emag , (1)

Eimg < 1 > = Emag sin(θphase) = 0, (2)

Eλ < 2 > = λlight . (3)

The straight waveguide is modeled by incorporating three sig-
nificant effects, namely, loss due to propagation, phase shift, and
time delay.10,11 The output electric field signal from the waveguide
is given by10,25

FIG. 2. Verilog-A models for differ-
ent photonic devices. (a) Laser model
with P as the output laser power, and
E < 0 : 2 > as the output electric field
signals.10,11,23 (b) Waveguide model with
Ein and Eout as the input and output
signals of electric field.10,11 (c) Coupler
with two input and output electric field
signals.10,11 (d) Photodiode model with
resistive and capacitive branches.11
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FIG. 3. (a) All-pass ring resonator with a thru port. (b) Circuit schematic for the all-pass ring resonator by combining coupler and waveguide (WG) in Verilog-A.10,11 (c)
Spectrum of the all-pass ring resonator implemented in Verilog-A.

Eout (t) = ∣Ein (t −
Lng

c
)∣e−αLejωϕ(t− Lng

c ), (4)

where Ein is the input electric field signal to the waveguide, L is
the length of the waveguide, c is the speed of light, ng is the group
index, α is the attenuation parameter, ϕ is the phase of the electric
field signal, and ω is the angular frequency of the light signal. The
implementation of complex electric field equations for the Verilog-A
waveguide model is attached in the supplementary information.

Phase shifters are modeled as a waveguide where the effective
refractive index neff and attenuation αeff depend on the system’s
perturbation, which can be due to thermo-optic effect, plasma-
dispersion effect, carrier-depletion, etc. In that case, the output of
the electric field from the phase shifter becomes10

Eout (t) = ∣Ein (t −
Lneff

c
)∣e−αeff Lejωϕ(t− Lneff

c ), (5)

where neff and αeff can be modeled by extracting polynomial-fit
coefficients26,27 from experimental or device level simulation data
such that neff = a0 + a1V + a2V2

+ a3V3
+ a4V4 and αeff = b0 + b1V

+ b2V2
+ b3V3

+ b4V4, with V being the voltage applied across the
phase-shifter.

The coupler is modeled as a unidirectional point coupler with
two input signals and two output signals as given in Fig. 2(c) and
defined as11

⎡
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⎦

, (6)

where t is the coupling coefficient, Ein1 and Ein2 are the input electric
fields to the coupler, and Eout1 and Eout2 are the output electric fields
from the coupler.

The PN junction diode describes the circuit model of the
photodetector with capacitive and resistive elements as shown in
Fig. 2(d).11 The diode works in the reverse bias condition, and the
output current is proportional to the incoming power of laser light.

The current through the photodetector diode is defined by using the
Shockey diode equation,

Idiode = Is(e
VPDbias

vt − 1), (7)

where Is is the saturation current; VPDbias is the voltage applied
across the photodetector; and vt is the thermal voltage defined by
kT/q in which k is Boltzmann’s constant, T is the temperature, and
q is the charge of an electron. The current through resistive and
capacitive branches is defined by

Iphoto = R∣Ein ∣
2, (8)

Icap =
d
dt
(CVPD bias ), (9)

where R is the responsivity of the photodetector in A/W, Ein is the
electric field of the incoming light, C is the capacitance, and VPDbias is
the bias voltage applied across the photodetector. The present model
of the photodiode is sensitive to all-optical wavelengths. Still, a filter
can be implemented in the Verilog-A code to work in a specific
bandwidth of wavelengths.

Microring resonator is modeled by combining discrete com-
ponents that include couplers, waveguides, and phase shifters.10,11

Figures 3 and 4 show the circuit schematic and the corresponding
spectrum of all-pass and add–drop ring resonators implemented in
Verilog-A by combining couplers and waveguides, respectively.10,11

The spectrum is obtained by performing a DC sweep simulation over
the wavelength of the light source. The spectrum shows the expected
Lorentzian output of the microring resonator for both thru and
drop ports.

V. PARAMETER EXTRACTION AND EXPERIMENTAL
VALIDATION

The photonic device model parameters, such as effective refrac-
tive index neff , attenuation co-efficient αeff , Δneff , etc., are extracted
by characterizing each of the on-chip device fabricated at Advanced
Micro Foundry (AMF). This section provides information about
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FIG. 4. (a) Add–drop ring resonator with thru and drop ports. (b) Circuit schematic for the add–drop ring resonator by combining couplers and waveguides (WG).10,11

(c) Spectrum of the add–drop ring resonator implemented in Verilog-A.

the methods used to extract and tune the parameters from the
measured data. In addition to it, Verilog-A simulations are com-
pared with the experimental results by incorporating the extracted
parameters.

A. MRR weight bank
One important component in photonic neuromorphic circuits

is the weight bank, which includes an array of microring res-
onators (MRRs) with a common bus waveguide passing through
each microring’s thru and drop ports. Figure 5(a) shows the

microscopic image of an on-chip weight bank with five microrings
with different radii, DC pads, and waveguides. Figure 5(b) shows the
experimental setup to obtain the spectrum of the weight bank, which
includes the mounted chip, DC probe for electrical probing, thermal
controller to stabilize the chip temperature, and V-Groove for
optical probing.

In Verilog-A, the N-MRR weight bank is created by combining
the N number of microrings in series with common thru and drop
ports bus waveguide. The spacing between microrings is defined by
adding a straight waveguide in-between the consecutive rings at the

FIG. 5. (a) The microscopic image of the microring weight bank with five MRRs. The MRRs are tuned by external voltage or current applied at DC pads. (b) Experimental
setup showing the mounted chip, DC probe, V-Groove, and thermal controller. (c) Circuit schematic of weight bank implementation in Verilog-A. MRRs are connected in
series with common thru and drop ports with waveguide (WG) in between them, and each of the microring is constructed by combining couplers and phase shifters (PS),
where colors of PS represent different length. (d) Comparison of Verilog-A simulation and experimental spectrum for the weight bank.
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TABLE I. Radii of the five MRRs of the weight bank. Fabricated radii are the values
that are expected on the chip based on the layout design, whereas Verilog-A radii are
the values that were used in the simulations.

Radii R1 R2 R3 R4 R5

Fabricated (μm) 8.000 0 8.012 13 8.024 26 8.036 39 8.048 52
Verilog-A (μm) 8.000 0 8.012 55 8.024 94 8.040 61 8.050 76

bus waveguide as shown in Fig. 5(c). In the present models, the cou-
pling coefficient t of the coupler is defined as a constant value that
can also be modified as a polynomial function of the gap in between
the ring and bus waveguide based on the device simulation or mea-
sured data. Figure 5(d) shows the comparison between the measured
spectrum gathered by using an optical spectrum analyzer (Aragon
BOSA 400) and the Verilog-A spectrum obtained at the thru port
of the weight bank. As the spectrum wavelength is quite broad, the
change in the refractive index of a silicon waveguide with wave-
length neff (λ) has also been considered in the Verilog-A model as
given by28

neff (λ) = n0 − 1.13(λ − λ0) − 0.04(λ − λ0)
2, (10)

where λ is the wavelength of light, λ0 is the reference wavelength,
and n0 is the refractive index of silicon at the reference wavelength.
Table I shows the values of fabricated radius based on the layout
design and the values used in Verilog-A simulations. The radii of
the last two rings have been modified slightly in Verilog-A so that the
resonances match the experimental data. The slight change in the
radii can be mainly due to the fabrication variations.

Each microring of the weight bank represents a weight, and
the weighting mechanism is performed by changing the resonance
wavelength. The method used to change the resonance of a ring in
the weight bank is a thermo-optic effect that includes changing the
temperature of the waveguide to affect the refractive index of the sil-
icon, which leads to a change in the resonance wavelength according
to the following equation:29

λres =
neff (T)L

m
, (11)

where neff (T) is the effective refractive index that is a function of the
temperature, L = 2πR is the length of the MRR waveguide of radius
R, and m is the order of resonant mode.

An n-doped heater embedded in the microring alongside the
waveguide is used to change the temperature of the silicon. The
n-doped heater contains the interplay of thermal, optical, and pho-
toelectric effects. The temperature affects the silicon’s refractive
index, which changes the transmission at the laser wavelength.
The change in transmission results in a change in photoelectric
absorption, which affects the resistance of the heater. The differ-
ence in the resistance changes the power applied at a given applied
current, which changes the temperature.30,31 Thus, to model an
n-doped heater accurately, each of these effects needs to be cap-
tured correctly. In our approach, the n-doped phase shifter is
modeled by finding Δneff with respect to the applied current. Equa-
tion (11) provides a direct relationship between Δneff and Δλres as
follows:

Δλres =
Δneff L

m
. (12)

Thus, extracting Δλres with respect to the current applied to the
n-doped heater and performing a polynomial fit on it will provide
information about Δneff .

Figure 6 shows the experimental spectrum obtained by sweep-
ing current (0–1 mA) to the first n-doped heater ring with radius
of 8 μm. The resonance wavelength of the MRR changes with the
applied current due to the thermo-optic effect.

The current sources (Keithleys 2600) are used to sweep cur-
rent and are controlled digitally using the Lightlab package.32 The
resonance wavelengths were extracted for the first ring, and the
change in resonance wavelength is plotted against the swept current
as shown in Fig. 7(a). Using Eq. (12), Δneff is found with a fourth
order polynomial fit as follows:

Δneff(Iheat ) = a0 + a1Iheat + a2I2
heat + a3I3

heat + a4I4
heat (13)

such that

neff(Iheat ) = n0 + Δneff (Iheat ), (14)

FIG. 6. Experimental spectrum of the
weight bank obtained by sweeping the
current (0–1 mA) to the first n-doped
heater microring with ring radius R1
= 8 μm. The resonance wavelengths
of other rings stay constant while the
first ring is thermally tuned because of
minimal thermal cross talk.
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FIG. 7. (a) Plot showing the measured change in resonance wavelength while sweeping current. (b) Polynomial fit to calculate the change in effective refractive index neff
with respect to the applied current. (c) Comparison of the measured and Verilog-A spectra of an n-doped MRR when the current is swept from 0 to 1 mA. (d) Comparison
of the measured and Verilog-A resonances of MRR at different currents.

where Iheat is the current applied to the MRR and the extracted poly-
nomial fit coefficients n0, a0, a1, a2, a3, and a4 are given in Table II
and the fitted plot is shown in Fig. 7(b).

The equation neff (Iheat) is implemented in the Verilog-A code
of a thermal phase shifter. The n-doped heater MRR is constructed
by combining a coupler and a thermal phase shifter. Figure 7(c)
shows the comparison between the simulation and the measured
spectra of n-doped heater MRR. The resonance wavelengths in the
Verilog-A spectrum for the n-doped heater match well with the
results from the measured data as shown in Fig. 7(d).

B. MRR modulator
Using the same methodology as given above, the PN junc-

tion MRR modulator is constructed by combining the coupler and
PN junction phase shifter.10,11,33 The electrical circuit model of the

TABLE II. Coefficients of neff for the n-doped heater obtained by doing polynomial fit
on the experimental data.

n0 a0 a1 a2 a3 a4

2.435 1.058 × 10−6
−2.99 × 10−2 1.142 × 103

−2.48 × 105 2.00 × 108

PN junction phase shifter includes the PN junction diode with the
capacitive branch such that11

Ires = Is(e
Vbias

vt − 1), (15)

Icap =
d
dt
(CVbias ), (16)

where Ires represents the Shockley diode equation and Icap is the
current through the capacitive branch.34 The capacitance value
is based on the circuit model of a ring modulator35 and can
also be modeled by a polynomial fit based on the device simula-
tion36 performed in software, such as Ansys Lumerical MODE and
CHARGE.

The on-chip MRR modulator exploits the plasma dispersion
effect to modulate the laser light. In plasma dispersion effect, the
concentration of the carriers is changed by either injecting or remov-
ing the carriers, which results in changing the refractive index of
the silicon and the absorption.28 The change in refractive index
and absorption are phenomenologically described by the following
equations:29,37

Δn(at 1550 nm) = −8.8 × 10−22ΔN − 8.5 × 10−18ΔP0.8, (17)
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Δα(at 1550 nm) = 8.5 × 10−18ΔN + 6 × 10−18ΔP[ cm−1
], (18)

where ΔN and ΔP are the carrier densities of electrons and holes,
respectively. Thus, to model a PN junction phase shifter, the change
in the refractive index and absorption needs to be derived.

To model neff and αeff , the on-chip PN MRR modulator is char-
acterized by measuring the change in resonance wavelength and
absorption with respect to the applied bias voltage to the ring mod-
ulator. Figure 8(a) shows the microscopic image of the on-chip PN
MRR modulator, and Fig. 8(b) shows the experimental setup includ-
ing the chip, RF probe for electrical probing, and V-Groove for
optical probing. Figures 8(c) and 8(e) show the observed spectrum
obtained for the modulator operated in reverse and forward biases,
respectively. The shift in resonance and absorption is higher in for-
ward biasing compared to the reverse bias condition for a given bias

voltage change. Equation (12) is used to find the difference in the
refractive index using a shift in resonance wavelength at different
bias voltages. A fourth order polynomial fit is done as shown in
Figs. 8(d) and 8(f) for reverse bias and forward bias, respectively,
such that

neff (Vbias ) = n0 + Δneff (Vbias ), (19)

Δneff (Vbias ) = a0 + a1Vbias + a2V2
bias + a3V3

bias + a4V4
bias , (20)

where Vbias is the reverse bias voltage applied to the modulator and
the constants n0, a0, a1, a2, a3, and a4 are given in Tables III and IV
for reverse bias and forward bias, respectively.

FIG. 8. (a) Microscopic image of the PN junction based MRR modulator with the ring radius of 8 μm. The modulator is biased using the SG probes of GSG (ground
signal ground) probe. (b) Experimental setup to collect the spectrum showing the chip, GSG RF probe for electrical probing, and V-Groove for optical probing. (c) and (e)
Experimental spectrum of the modulator obtained by biasing it at different voltages in reverse and forward bias, respectively. (d) and (f) Polynomial fit to calculate the change
in effective refractive index neff of the microring modulator with respect to the bias voltage applied.
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TABLE III. Coefficients of effective refractive index (neff ) and effective attenuation
coefficient (αeff ) for the PN based MRR modulator in reverse bias condition obtained
by doing polynomial fit on the measured data.

n0 a0 a1 a2 a3 a4

2.435 −3.8 × 10−7
−1.3 × 10−5 3.1 × 10−5

−9.1 × 10−6
−7.6 × 10−6

α0 b0 b1 b2 b3 b4

2.11 0.1 × 10−6 2.1 × 10−1 2.6 × 10−2 2.3 × 10−3 8.4 × 10−5

The attenuation coefficient is also calculated by using the fourth
order polynomial fit such that

a2
= exp(−αeff L), (21)

αeff = α0 + Δαeff , (22)

Δαeff = b0 + b1Vbias + b2V2
bias + b3V3

bias + b4V4
bias, (23)

where a is the single-pass amplitude transmission that includes both
propagation loss in the ring and loss in the couplers;29 αeff is the
power attenuation coefficient; L is the length of the phase shifter;
Vbias is the bias voltage across the PN junction; and b0, b1, b2, b3, and
b4 are the polynomial fit coefficients given in Tables III and IV for
reverse bias and forward bias, respectively. The fourth order poly-
nomial fit curves are an empirically good fit on the measured data
based on the r-square values.

After obtaining neff (V) and αeff (V), the polynomial fit equa-
tions are implemented in the phase shifter Verilog-A model. The
PN junction MRR modulator is constructed by combining coupler

TABLE IV. Coefficients of effective refractive index (neff ) and effective attenuation coefficient (αeff ) for the PN based MRR
modulator in forward bias condition obtained by doing polynomial fit on the measured data.

n0 a0 a1 a2 a3 a4

2.435 0.077 653 58 0.350 108 78 0.581 532 82 0.419 578 09 0.110 061 62

α0 b0 b1 b2 b3 b4

0.2 −78.80 −733.17 −1731.16 −1551.76 −472.27

FIG. 9. (a) and (c) Comparison of the simulated and the measured spectra of PN junction MRR modulator for different reverse bias and forward bias conditions, respectively.
(b) and (d) Comparison of the simulated and measured resonance wavelengths of MRR modulator at different reverse bias and forward bias voltages, respectively.
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and PN junction phase shifter and optical spectrum simulations
are performed by biasing the PN phase shifter at different voltages.
Figures 9(a) and 9(c) show the comparison between the simulated
and the measured spectra obtained for the PN junction modula-
tor in reverse bias and forward bias, respectively. The resonance
wavelengths for the simulations are consistent with the experimental
results as shown in Figs. 9(b) and 9(d) for different biases. The loss
in the simulated spectrum is deviated from the measured spectrum
because the measured spectrum is not symmetric about the reso-
nance wavelength. The asymmetry in the ring modulator spectrum
can occur due to several reasons, such as nonlinear interactions,38

optical bistability,39 fabrication imperfections in the directional cou-
pler of the ring, or the back-reflections from outside of the ring.40

The present Verilog-A models assume the ideal conditions and do
not account for these imperfections and interactions.

VI. SILICON PHOTONICS NEURON
The photonic neuron simulation includes implementing the

activation functions and integration of laser, microring resonator,
photodetector, microring modulator, and electrical components on
the same platform. Verilog-A supports the integration of these
devices for neuromorphic simulations.

A. Modulator characteristics
The modulator neuron consists of two photodetectors (PDs) in

a balanced configuration connected electrically to the driving input
of the MRR modulator as shown in Fig. 10. The two PDs are reversed
biased and sense two multiplexed incoming signals (P+ and P−). The

FIG. 10. Schematic of a silicon photonic MRR modulator.22 The output current from
the BPDs modulates the MRR modulator, and the modulator applies a nonlinear
activation function on the input pump power.

balanced PD (BPD) outputs a current iBPD that is proportional to the
difference of the power of the incoming signals such that

iBPD = i+ − i−, (24)

where i+ is the photocurrent from the positive PD (proportional
to P+) that adds to the injected current and i− (proportional to
P−) is the photocurrent from the negative PD that diverts the cur-
rent coming from the bias (ibias). The output photocurrent from
BPD combines with the incoming bias current ibias. The total cur-
rent (i+, i−, ibias) passes through the resistor-based transimpedance
amplifier (TIA). The TIA output voltage drives the PN based MRR
modulator that exploits the plasma-dispersion effect to change the

FIG. 11. Wavelength spectra of a PN junction carrier injection MRR modulator for different permutations of bias voltage Vbias and heater current Ih, implemented in Verilog-A.
Different colors correspond to cases when laser is ON at the upper PD only (orange), lower PD only (green), both lasers ON (blue), and both lasers OFF (dotted red). The
output trend is consistent with the experimental results as given in Ref. 22.
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FIG. 12. Comparison of the experimental
and Verilog-A simulated transfer func-
tions of PN MRR modulator correspond-
ing to (a) quadratic shape activation
function and (b) sigmoid shape activation
function.

refractive index of the silicon microring, which, in turn, results in
a nonlinear transfer on the power of the input pump laser (Ppump).
The plasma dispersion effect provides high-speed modulation of the
MRR resonance, but it is a weak effect. In some cases, the resonance
of the MRR needs to be significantly tuned so that the transfer func-
tion of the MRR modulator corresponds to the required activation
function. A heater element (n-doped heater or a resister) is also fab-
ricated alongside the MRR that exploits the thermo-optic effect to
tune the resonance wavelength. The thermo-optic effect is a strong
effect in changing the resonance wavelength, but it has a slow mod-
ulation response. Therefore, the plasma dispersion effect is used in
the case of high-speed tuning, and the thermo-optic effect is used in
the case of significant resonance wavelength tuning.

Figure 11 shows the wavelength spectra of the MRR modulator
at different combinations of heater current (iheat) and bias cur-
rent/voltage (ibias/Vbias) for the PN junction modulator simulated
in Verilog-A. The balanced photodetector has two laser inputs (IN
+ and IN−) corresponding to the laser connected to the upper PD

and the lower PD, respectively. The different colors of the spectra
correspond to the cases when only one of the lasers is on (IN + or
IN−), both lasers are on, and both lasers are off. The heat current
shifts the resonance to the right, whereas the bias current/voltage
shifts the resonance to the left, thus enabling both red and blue shifts.
It can also be noted that the change in resonance is much higher in
the case of heater current ih than the bias voltage Vbias.

B. Transfer functions
The photonic neuron can implement several nonlinear acti-

vation functions that are important for different machine learning
applications. The transfer functions of an MRR modulator are used
to implement other different activation functions. Different activa-
tion functions are obtained by biasing the modulator at different
voltages. Experimentally, the transfer functions of a PN modulator
are obtained by sweeping the bias voltage at a constant input wave-
length of laser light. Figure 12 shows the comparison between the

FIG. 13. (a) and (b) Sigmoidal and quadratic shape transfer functions of the modulator implemented in Verilog-A, by using different bias conditions, respectively. (c) A carrier
wave is input to the modulator neuron using one of the PD. (d) and (e) Modulated output of the MRR modulator with sigmoidal and quadratic transfer functions implemented
on input carrier signal, respectively. The output in the simulations is consistent with the experiments as given in Ref. 22.
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FIG. 14. Circuit schematic of the photonic neuron with one microring weight implemented in Verilog-A. Pin represents the output power of the laser, tunable MRR represents
the weight, and modulator transfer function acts as an activation function. The current Iheat at the MRR weight w i is swept in the linear region (0.2–0.4 mA), which changes
the voltage at the modulator, thus implementing non-linear activating function at the output of the neuron.

simulated and the experimental transfer functions obtained for the
PN junction based MRR modulator. The simulation and experimen-
tal data can be seen well aligned for quadratic and sigmoid shape
transfer functions.

The implementation of the activation function is also tested
on a time-varying input signal. A CW laser source is used to input
the signal in one of the positive PD of the BPD, while the nega-
tive PD is set to be zero laser power. Figure 13 shows the response
of the modulator neuron to the time-varying input carrier signal.
For the rectified output [Fig. 13(d)], the modulator is biased such
that the transfer function corresponds to the sigmoidal shape acti-
vation function (Fig. 13). The steepness of the linear region of the
transfer function can be changed in many ways, such as increasing
absorption by operating the modulator in forward bias, designing
application-specific MRR, etc. The position of the linear region can
also be changed by biasing at a different region of the Lorentzian
peak. Similarly, for the quadratic output [Fig. 13(e)], the modula-
tor is biased to obtain the quadratic transfer function [Fig. 13(b)].
Both the transfer functions are biased at the starting point (x = 0.0)
of the x axis in Figs. 13(a) and 13(b) to obtain Figs. 13(d) and 13(e),
respectively.

C. Photonic neuron: linear weighting and nonlinear
activation

A single photonic neuron is simulated in Verilog-A to imple-
ment input, linear weighting, and non-linear activation function to
show fully integrated photonic neuron implementation. Figure 14
shows the schematic of the single photonic neuron with optical and
electrical parasitics. The laser power (Pin) represents the input (xi)

to the neuron, the current (Iheat) to the n-doped heater represents
the weight (wi), balanced photodetectors perform the summation
operation, and the transfer function of the modulator represents an

activation function (σ). RTIA acts as a passive transimpedance ampli-
fier and the circuit parameters such as parasitic resistance (Rpar) are
also included based on the literature.35 The output power of the laser
is set constant by providing a constant voltage to the laser. The wave-
length of the laser is set according to the resonance wavelength of
n-doped MRR. The weighting mechanism [−1,1] is performed by
applying current Iheat to the n-doped MRR. The modulator is biased
by Vbias voltage so that it operates in the required region of the trans-
fer function. Sweeping the current at the n-doped heater changes
the resonance wavelength of the MRR, which results in changing
the voltage at the modulator as shown in Fig. 14. The voltage at the
input of the modulator drives the modulator to implement the non-
linear activation function on the input power of the modulator laser.
By changing the bias voltage, the modulator can be operated to
implement different transfer functions corresponding to the neural
network’s activation functions.

VII. CONCLUSION
In this paper, we adopted a Verilog-A based approach for sim-

ulating neuromorphic architectures by modeling lasers, waveguides,
couplers, photodetectors, and phase shifters. The parameters for the
photonic devices are extracted from the experiments and imple-
mented in the Verilog-A models. The simulation results for the
composite devices, such as MRR weight bank and MRR modulator,
are found to be consistent with the experimental results, thus vali-
dating the Verilog-A models. We have also shown the characteristics
of the MRR modulator by showing the implementation of trans-
fer functions and response to different bias voltages. Furthermore,
the electrical circuit parameters and parasitics are also included
in the simulation of the single photonic neuron. The work done
in this paper would significantly increase the capabilities to per-
form electro-optical co-simulations on the same platform primarily
dedicated toward photonic neuromorphic computing architectures.
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This work can be extended to perform large-scale neuromor-
phic photonic circuit simulations. A Python package can be made to
automate the netlist generation and interface it with general python-
based machine learning training packages, such as Tensorflow,41

Keras,42 and ONNX.43

SUPPLEMENTARY MATERIAL

See the supplementary material for implementing the complex
electric field equations in the waveguide Verilog-A model.
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