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Abstract—The resurgence of artificial intelligence enabled by
deep learning and high performance computing has seen a dramatic
increase of demand in the accuracy of deep learning model which
has come at the cost of computational complexity. The fundamental
operations in deep learning models are matrix multiplications,
and large scale matrix operations and data-centric tasks have
experienced bottlenecks from current digital electronic hardware
in terms of performance and scalability. Recent research on pho-
tonic processors have found solutions to enable applications in
machine learning, neuromorphic computing and high performance
computing using basic photonic processing elements on integrated
silicon photonic platform. However, efficient and scalable photonic
computing requires an information encoding/decoding scheme.
Here, we propose a multi-level encoding and decoding scheme,
and experimentally demonstrate it with a wavelength-multiplexed
silicon photonic processor. We also discuss the scalability of our pro-
posed scheme by introducing a photonic general matrix multiply
compiler, and consider the effects of speed, bit precision, and noise.
Our proposed scheme could be adapted to a variety of photonic
information processing architectures for photonic neural networks,
photonics tensor cores, and programmable photonic.
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I. INTRODUCTION

ADVANCEMENTS in machine learning (ML) and artificial
intelligence (AI) technologies have enabled numerous

applications including sophisticated recommendation models,
natural language processing, machine vision, augmented reality,
and so on [1], [2], [3], [4]. The groundbreaking progress of
these AI applications in different fields is enabled by heavy
dependence of ML algorithms training on large data sets. Since
the interconnection of neurons in artificial neural networks can
be described by a matrix and the data being processed can be
represented as a vector, training on large data sets with deep
neural networks results in large-scale dense matrix-vector mul-
tiplications. The improvement in the performance (i.e. accuracy)
of many ML applications comes at the cost of higher computa-
tional power requirement [5]. As such, there has been significant
progress in the development of digital electronic application-
specific integrated circuits known as AI accelerators that are
dedicated for dense matrix computations [6], [7]. However,
modern AI accelerators have seen two major bottlenecks when
it comes to energy efficiency: data transfer to and from memory,
and large matrix-vector multiplications, and both have imposed
strict physical limitations on the scalability and performance of
digital electronic AI accelerators.

Integrated photonic processors enabled by silicon photonics
have shown promising capabilities in accelerating tensor (i.e.,
multidimensional vector and matrix) operations [8], [9], [10],
[11] by exploiting the high bandwidth of photonic devices (mod-
ulators and photodetectors), low latency and minimal energy-
delay product due to passive optical waveguides [12]. Some
of these processors [9], [10], [11] are scalable and can use the
parallel nature of light through wavelength-division multiplex-
ing (WDM) to achieve large-scale interconnects and massively
parallel data processing and transfer. Recent developments have
proven that the wavelength-multiplexed silicon photonic plat-
form can be operated with up to 7-bit precision [13], and most
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recently 8.5-bit precision [14] on each individual multiplication
unit. However, recent studies in these photonic processors have
also seen an increasing demand for a rigorous photonic pro-
gramming scheme to facilitate efficient communication between
photonic hardware and its control system [8], [9], [12], [15].
A reliable information encoding and decoding scheme is re-
quired to interface between the silicon photonic platform and
rest of the computing systems.

The core of a programmable system is a viable and efficient
information encoding and decoding method that translates the
same information between different hardware platforms and
media using their own “languages” respectively. For example,
in digital electronics, binary scheme is used as the information
encoding and decoding method, where every channel in a binary
system has one of the two digital states: either “1” or “0”.
However, the actual switching of the state at the transistor level
is achieved through changing the voltage across the transis-
tors. Therefore, the binary scheme maps “1” to a high voltage
value and “0” to a low voltage value, and the binary scheme
serves as the fundamental for all digital electronic platforms
and hardware. Similarly, silicon photonic systems also require
such an information encoding and decoding method that can
conveniently translate information between digital user inter-
face and analog compute hardware, using the specific physical
parameters measured on different silicon photonic hardware
platforms.

In this work, we present a feasible information encod-
ing/decoding solution, the multi-level scheme, for WDM pho-
tonic processors based on microring resonator (MRR) [11], [16],
[17]. Unlike the digital binary information system, the proposed
multi-level scheme encodes multiple values as distinct amplitude
levels using only a single analog input channel. Instead of using
multiple channels to achieve a high bit precision, the multi-bit
encoding method from multi-level encoding scheme will enable
a higher bandwidth per input channel. By designing a dedicated
information system for photonic tensor processors, we aim to
take full advantage of photonics to create a fully packaged
software/hardware photonic tensor processor solution that is
capable of large matrix operations. As a dedicated photonic
information system, the proposed multi-level encoding scheme
can be generalized to different photonic tensor processors im-
plementing an MRR-based architecture, and will also ensure a
high compatibility with these photonic systems to achieve a high
scalability on a hardware level. To demonstrate the scalability
of our photonic tensor processor, we have implemented a simple
general matrix multiplication (GeMM) compiler for the multi-
level photonic information system as a software scaling solution.
Computation results have verified the viability of this approach,
and the computation accuracy is close to ideal for large matrices.
A hardware scaling solution is presented, and we have shown an
example of the actual implementation of this solution in a later
iteration of our photonic tensor processor design.

II. MULTI-LEVEL INFORMATION ENCODING AND DECODING

A. Photonic Tensor Processing Element

The multi-level information encoding/decoding scheme is
designed for the photonic tensor processing element (TPE)

Fig. 1. (a): schematics of an MRR-based photonic TPE for vector dot product
between vectors X and W , along with its control system. (b): general math-
ematical concept for matrix-vector dot product using MRRs, and an optical
micrograph of the fabricated silicon MRR with N-doped heater inside a photonic
TPE on a silicon-on-insulator (SOI) platform.

shown in Fig 1. This architecture was first proposed by Ban-
gari et al. [11] to perform convolution operations and recently
demonstrated by Marquez et al. [18] for vector dot products
with limited precision. The photonic TPE includes an array
of MRRs, each operating on a distinct resonant wavelength,
encoding a row vector �W . Tunable lasers, that are intensity
modulated (with variable optical attenuators (VOAs) in our case,
or directly modulated laser (DML) diodes [19]), provide carrier
signals for encoding the inputs �X to the MRRs using different
wavelengths. For a proof-of-concept demonstration, our TPE
processes vectors of size n resulting in n lasers and n coupled
MRRs. As shown in Fig. 1(a), the MRRs are in an add/drop
configuration and are coupled with two bus waveguides—a
shared waveguide for IN-THRU connection, and another one
connecting the DROP. While the input vector �X is encoded
via the attenuators as the intensities of the input optical power,
the weight vector �W is encoded as currents to the MRRs that
shift their resonances, and redistribute the input optical between
the DROP and the THRU ports according to the difference
between the resonance of the MRR and the laser wavelength.
In short, each input value is encoded onto a channel with a
different wavelength, and we use multiple MRRs in parallel,
each weighting a different channel. Both the inputs and weights
are strictly encoded as the amplitude of the input optical power,
as well as the output measurements. Thus, the phase infor-
mation will be neglected on all optical channels, and we will
not discuss any phase-change effects in our photonic TPE. As
a proof-of-concept, we exploit the thermo-optic effect for the
MRRs tuning [20], [21]. More efficient carrier-depletion effects
or phase-change materials [22] can also be used to shift the
resonant wavelength of the MRR with the current.
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Fig. 1(b) shows the silicon photonic TPE fabricated on a
silicon-on-insulator (SOI) wafer with a silicon thickness of
220 nm and a buried oxide thickness of 2 μm. The bus waveg-
uides have a width of 500 nm. The MRRs have radii of 8.0 μm,
8.01213 μm, 8.02426 μm, 8.03639 μm, 8.04852 μm. The gap
between the ring and the bus waveguide is 200 nm, yielding a
Q factor of ∼ 6000, and the free spectral range is around 12 nm
for an MRR with 8 μm radius. The MRRs have N-doped photo-
conductive heaters [23] that can actuate the weight by thermally
tuning the MRR resonance. To implement the N-doped heater,
each MRR consists of a circular waveguide is etched to a 90 nm
thick pedestal that hosts the phosphorous dopants. A 10 μm
wide N doping section is patterned to follow the MRR, outside
of which heavy N++ doping is used to make ohmic contacts.
The phosphorous dopant concentrations are N: 5× 1017 cm−3

and N++: 5× 1020 cm−3. Metal vias and traces are deposited to
connect the heater contacts of the MRR weight bank to electrical
metal pads.

The TPE control system consists of source meters that provide
the current to the MRRs, and a powermeter with a balanced
photodetector, all controlled by a computer. The output optical
power from both DROP and THRU ports are collected by the
two photodetectors in a balanced push-pull configuration that
subtracts the THRU port power from the DROP port power,
giving us PDROP − PTHRU in units of dB [24]. All analog
values are passed to and from the computer that regulates the
information flow between a user application for ML and the
photonic TPE.

B. Input and Weight Encoding

The encoding scheme requires each photonic channel to
represent numbers with n-bit precision using analog signals,
and every analog value to be decoded back to its corresponding
digital value. The photonic TPE has already shown promising
results in its bit precision, and the highest possible precision
achieved on a single photonic channel has been verified to be
7-bit [13], and more recently to be 8.5-bit [14]. Here, each
photonic channel will include one MRR for multiplication, and
one attenuator for input encoding.

The proposed multi-level encoding scheme implements a
direct value mapping to translate an n-bit digital number to
an analog value, and requires calibration and validation stages
before and after the computation, respectively, as shown in
Fig. 2. The calibration stage first starts with the inputs to the
MRR, which are encoded as the amplitude of the input optical
channel modulated by an attenuator. A direct input mapping is
implemented to encode numerical input values onto the attenu-
ation applied on the input optical channel. Next, the calibration
performs a heating current sweep for one MRR at a time under a
constant laser power, and compares the currents to the measured
outputs, PDROP − PTHRU , of the MRR. After collecting the
heating current sweep data, we will choose a range of heating
currents that produce a relatively linear response in optical
output power as the MRR profile.

As shown in Fig. 3, the points in the middle of the heating
current range produce a relatively linear trend. The relatively

Fig. 2. Operation flowchart for a single MRR, including both calibration and
validation stages.

Fig. 3. Experimental data for the MRR profile mapping the measured output,
PDROP − PTHRU , to the applied heating current, Iheat.

linear region is selected using the result of a linear regression of
the heating current sweep data. We choose a specific tolerance
of standard deviation that we aim to achieve, and manually
adjust the heating current range for the linear regression until
the standard deviation is under the specified tolerance. Having
created the input mapping and the MRR profile, the next impor-
tant parameter to define is the “zero point,” or the “reflection
point,” of the MRR. The reflection point of the MRR represents
the specific current value required to move the resonance of the
MRR such that only half of the input optical power couples into
the MRR and goes into DROP, while leaving the other half going
into THRU. Thus, the linear power difference between DROP
and THRU ports, PDROP − PTHRU , is essentially a constant
regardless of the input power. Therefore, we can perform a
two-dimensional sweep on both the heating current and input
power level to find the reflection point for the MRR, as shown
in Fig. 4. The criterion for choosing the reflection point is the
spread of power difference values at every current levels. The
spread of power differences represents how far away the MRR is
from the heating current level that gives the even distribution of
power between DROP and THRU ports. A larger spread means
the MRR is further away from that current level, and the less even
power distribution will pronounce the change in input attenua-
tion in larger magnitudes. On the contrary, the smallest spread
means the MRR is almost indifferent to the change in input
attenuation, and this only happens when the power distribution
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Fig. 4. Experimental data for the sweep that searches for the reflection point in
the output transmission for the MRR. The powers from both DROP and THRU
ports are measured at the output of the optical circuit, which is equivalent to
the location before the signals come into the balanced photodetectors. The laser
pump power is a constant 10 dBm, and with the input attenuation the laser pump
power is low enough that it will not cause optical nonlinearities.

between THRU and DROP is close to even. Ideally, the constant
power difference between DROP and THRU will be zero, but
because of insertion losses between the waveguides and MRR,
the measured reflection point yields a constant, non-zero power
difference. However, for a practical MRR, the heating current
levels that create the reflection point and the zero point are
related to each other, the difference between these two points are
determined by the coupling condition of DROP and THRU ports.
Different coulping conditions will introduce different insertion
losses on DROP and THRU ports, which breaks the even power
distribution between the two ports in the ideal case.

Here we use electrical current instead of electrical power as
the calibration metric during the search for the reflection point
of an MRR. In theory, thermo-optic effect shifts the resonance
of the MRR by applying a heating power to the MRR, and the
resonance shift is linear with applied power. When the MRR
is on-resonance with the input power, the input light will also
induce a small photocurrent that affects the power reading. In
addition, the resistance of the MRR will also increase as the
temperature increases as a result of thermo-electric effect, con-
sequently affecting the power measurement. On the other hand,
if we focus on the small range of power output values around
the reflection point, the output values can be approximated as a
linear response. This allows us to use current values during the
calibration phase with acceptable accuracy. Another benefit of
using a tight range of current around the reflection point is that
the small range prevents the use of larger currents and higher
heat fluctuations created by large changes in the current from
weight updates.

To further explain the reason for this non-zero “reflection
point,” we will take a closer look at an MRR under different
coupling conditions: with critical coupling between THRU and
DROP ports, and with symmetrical coupling between the two
ports. The equations that describe different coulping conditions
are originally demonstrated by Stokes et al. [25] and Heebner
et al. [26], and are later re-derived by Bogaerts et al. [27]. Here,
we assume the coupling coefficient between the MRR and THRU
port is r1, the coupling coefficient between the MRR and DROP

is r2, the loss in the MRR isa, and the detuning isφ. The detuning
can be calculated as following:

φ =
2πneff

λ
· 2πR =

4π2Rneff

λ
. (1)

Here, neff is the effective refractive index of the MRR, R is the
radius of the MRR, and λ is the wavelength of the input optical
signal. Then we calculate the THRU port transmission, TTHRU ,
as following:

TTHRU =
r22a

2 − 2r1r2a cosφ+ r21
1− 2r1r2a cosφ+ (r1r2a)2

, (2)

and the DROP port transmission, TDROP , as following:

TDROP =
(1− r1)

2(1− r2)
2a

1− 2r1r2a cosφ+ (r1r2a)2
. (3)

Finally, we can calculate the insertion loss, IL, for the MRR as
following:

IL = 10 log
TTHRU + TDROP

1.0
. (4)

The transmission curves plotted using (2)–(4) for both coupling
conditions are shown in Fig. 5(a), as well as the insertion loss
curves for both coupling conditions shown in Fig. 5(b). As is
shown here, there is a non-zero insertion loss at resonance in
both coupling conditions, meaning the magnitude of DROP port
transmission will always be less than that of the THRU port trans-
mission. As a result, the “reflection point,” which is calculated
as the difference between DROP and THRU port powers at half
THRU port transmission, will be non-zero in a real-world MRR
with losses regardless of which coupling condition. In addition,
we choose symmetrical coupling condition for all MRRs in our
photonic TPE because of fabrication variation. It is hard to hit an
exact coupling value, r, because the as-fabricated gap strongly
affects r. On the other hand, it is easy to make r1 = r2 by making
it symmetric because the gaps usually come out the same. Most
of the MRRs that have been fabricated for our weight banks are
over coupled, meaning (1− a) � (1− r). This is not optimal
in terms of Q-factor, but it takes the loss, a, out of (2) and 3.
Thus, we can end up with an expression that has good extinction
ratio and also is robust to fabrication-sensitive parameters.

Now we can combine the “reflection point” location with the
MRR profile to choose a proper heating current range and map
that range to the other set of inputs that are encoded as heating
currents to the MRR. The selected heating current range should
center around the reflection point so that we can encode same
range of positive and negative numbers. Since multiplication
between two numbers can also be interpreted as one value being
weighted by another, we call the mapping between the second
set of inputs and heating current the weight mapping.

C. Output Decoding and Calibration

Finally, the output mapping is created using both the weight
mapping and the input mapping. This step generates random
numbers for both the heating current on the MRR and the
attenuator, and the product of the two is represented as the power
difference between the DROP and THRU ports of the MRR
as PDROP − PTHRU . The measured outputs from the MRR
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Fig. 5. (a) Transmission curves of the THRU (blue) and DROP (red) ports
of a lossy MRR under either symmetrical coupling condition (solid lines) or
critical coupling condition (dashed lines). For the MRR dimensions, we choose
an MRR with a 8 µm radius and an effective refractive index of n = 2.82, the
loss is a = 0.99 and the coupling coefficient between the MRR and the THRU
port is r1 = 0.97. For symmetrical coupling condition, we choose the coupling
coefficient between the MRR and DROP port to be r2 = r1, whereas for critical
coupling condition we have r2a = r1. (b) Insertion loss (IL) curves (black) for
both coupling conditions on the same plot, calculated using (4).

are mapped to the range of desired digital values after a linear
regression, and the parameters of the regression are used as the
output mapping to transform all measured optical output power
to the numerical values, thus concluding the entire calibration
stage for a single MRR.

The calibration stage is executed once at the start of the pho-
tonic system, and then the photonic TPE enters the computation-
validation cycle. To demonstrate our proposed multi-level en-
coding and decoding scheme using a single channel, the calibra-
tion is performed using only one tunable laser and one MRR. For
larger scale photonic TPEs, calibration will require switching
on all the optical channels and only calibrate one channel at
a time. This will take into account the constant optical power
offset contributed from all the other channels at the output.
The validation stage keeps track of the laser inputs, the MRR
inputs, and the outputs, together with the three mapping profiles
obtained from calibration stage. To reduce compute latency and

operation complexity, validation on the output values will not be
executed on every output. Here we can implement our control
system to sample the outputs at a fixed frequency (i.e., every 5
minutes), and every sampled output is compared to the expected
output calculated with the set of MRR and laser inputs, and the
system will trigger a re-calibration if the measured output failed
to match the expected output within tolerance.

The step that consumes the most time during a validation-
recalibration process is the laser frequency sweep to redefine all
the resonances of the MRRs due to resonance shifts over time.
This is directly constrained by the tuning speed of the tunable
laser (TLS). In our experiments the tuning speed of the TLS
is 100 nm/s, and the typical free spectral range for our MRR
designs with an 8 μm radius is around 20 nm. Therefore, it takes
about 0.2 seconds to complete a frequency sweep to redefine
all the MRR resonances. Other steps include the differential
comparison between measured and expected values during the
validation stage, and laser frequency resets after the resonance
calibration. These steps take significantly less time when com-
pared to the TLS frequency sweep. Therefore, we estimate
that each validation-recalibration process will take around 0.2
seconds. In addition, our further system stability testing results
showed that such validation-recalibration process would only
be required hourly, making the time lost during this process
insignificant compared to our system’s actual uptime.

III. OPERATIONAL RULES

A. Precision Flexibility

The multi-level encoding scheme only provides finite preci-
sion for number representation, and the total number of dif-
ferent values is also limited. On the other hand, the range
of user requested values can vary depending on the specific
application intended for the photonic TPE. However, because
the proposed encoding and decoding scheme takes advantage of
direct value mapping, the range of digital value that the analog
signals are mapped to is arbitrary. In addition, the photonic
TPE also supports multi-bit precision during operation, and the
switch between different bit-precision only requires a system
re-calibration. Therefore, the photonic TPE can be flexible with
the value mapping and bit-precision during the encoding and
decoding process. For example, if the software requires high
computational accuracy but relatively small numerical ranges for
input and output values, then the photonic TPE can use lower bit-
precision for faster re-calibration, and fit the smaller numerical
ranges with better computational accuracy. Here, computational
accuracy is defined as the difference between measured and
expected outputs. For lower bit-precision, each digital output
value can have a larger analog output range, which can greatly
reduce inaccuracy due to any kind of signal fluctuations or
system instabilities. On the other hand, if the software requires
larger numerical input and output ranges but has higher tolerance
on accuracy, the photonic TPE can instead incorporate higher
bit-precision encoding scheme to cover more values in the large
numerical ranges. In this case, we can fit more digital values
within the same overall analog output range at the expense of
reducing the analog step size for individual digital output values.
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The choice for higher or lower bit-precision is largely dependent
on the actual application, thus the control system will require
user specification to configure the bit-precision used in actual
multiplication tasks.

B. Commutative Property

To guarantee the stability of the system, the multi-level
encoding scheme also imposes strict operational rules on the
inputs for both the MRRs and the lasers. The input encoding for
both sides uses the same direct value mapping between digital
and analog values, but the underlying operating mechanisms
are different. For the attenuators, different digital values are
mapped to different optical power levels through different levels
of attenuation, where small digital numbers corresponds to large
attenuation, and vice versa. Since non-linearity will occur at
high attenuation, we can only operate within a relatively small
range of attenuation. As a result, the input optical power will
never go to zero. For the MRRs, the digital values are mapped to
the applied heating current values, which shift the resonance of
the MRRs. The mismatch between the MRR resonance and the
laser wavelength determines how the incoming optical power is
distributed between DROP and THRU ports, but the total output
power will equal the total input power in the ideal lossless case.
Because loss is present in a real-world scenario, a higher laser
power is more beneficial for a better performance of the photonic
TPE. In addition, the heating current range chosen for the MRR
will center around the “zero” point where the output power
is evenly distributed between DROP and THRU. This means
that the output power range is also centered around the zero
point, and only spans a limited range on both sides of the zero
point. Therefore, the input mapping can only encode numbers
to a non-zero optical power range, whereas the weight mapping
encodes numbers that centers around zero optical power. As a
result, same numbers going through the attenuator will produce
a different optical output than those going through the MRR,
and the range of available optical outputs is different for the
two. Therefore, multiplication of numbers from both sides does
not commute, i.e. a× b does not equal b× a. To circumvent this
problem, the multi-level encoding scheme will force the larger
number through the lasers when multiplying two numbers with
the photonic TPE since higher input power for the MRR will
give better output resolution.

C. Negative Number Encoding

Aside from the non-commutative operation rule mentioned
above, we also implement another restriction on the sign of the
multiplication. Since only the MRR can encode both positive
and negative numbers using left and right of the “zero” point in
its output power but the attenuator can only encode positive num-
bers, any negative number we encounter will be sent to the MRR
automatically. In case of two negative numbers during multipli-
cation, both negative signs will be dropped automatically since
that is equivalent to two positive number multiplication.

An alternative solution to encode negative numbers in our
photonic TPE is to have another photonic TPE with the exact
same configuration running in parallel. This will allow us to

Fig. 6. Output mapping for a 11-bit signed system with 6-bit signed inputs.

separate negative and positive multiplication completely within
our control system for the TPEs, and dedicate one photonic TPE
to process either all positive/negative multiplications, or mixed
positive/negative multiplications. For either TPE, negative signs
will be dropped everywhere during multiplication, and the con-
trol system will take outputs from the one processing mixed pos-
itive/negative multiplications as negative values automatically.

IV. EXPERIMENTAL DEMONSTRATION

Here, we implement a 11-bit signed system with 6-bit signed
inputs for our proof-of-concept demonstration. First we perform
the calibration stage as mentioned above, including creating an
input mapping, an MRR profile, and performing a reflection
point search. The input mapping uses an attenuation range
between 2 dB and 8 dB for mapping 25 positive input digital
numbers to their corresponding, linearly spaced, analog optical
power levels. From the reflection point search we determine that
a heating current of 0.48 mA to the MRR would produce a zero
output power calculated from PDROP − PTHRU . Combining
this with the MRR profile which gives us the heating current
range that produces a linear output power level, the weight map-
ping is finished with a heating current range between [0.37, 0.59]
mA that fits 26 signed digital numbers.

Next, the output mapping is constructed through sweeping
both inputs and weights across all possible values using both
the input mapping and the weight mapping. All possible in-
put/weight combinations include 25 × 26 = 2048 pairs, but only
a subset of combinations that meet the aforementioned commu-
tative property is selected. The input number range is chosen
to be [0, 31], and the weight number range is [−31, 31]. The
choice of values inside the matrices is based on the selected
precision for the system, which is a 6-bit signed integer system
as an example. This range is only a digital representation of
the measured analog values, and the example demonstrates how
the matrix dot product will work based on an arbitrary value
range selection. However, this value range selection can be
any numerical range that centers around zero depending on the
application, and in many situations, the common choice will
be the normalized range of [−1, 1]. We collect the experimental
results as shown in Fig. 6. Here, the expected output is calculated
by multiplying the input number with weight number directly
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Fig. 7. Multiplication results with full range of 6-bit signed inputs and weights
with the implementation of above mentioned operational rules. Here the inputs
range between−31 and+31, and the weights also have the same range. Different
colors in the colorbar represents the product of a weight value and an input value,
with purple representing the smallest and the yellow representing the largest.

inside the control computer. The measured output is converted
from the measured optical output power, PDROP − PTHRU , to
the desired output number range via a re-scaling. The re-scaling
of experimental data first performs a linear regression using both
the measured output power and the expected output values, and
then it compares the slope and intercept of experimental data to a
theoretical slope of 1.0 and intercept of 0.0. After the re-scaling,
the measured experimental data is converted to measured output
values that were in the same range as the expected outputs.

Having fully characterized the photonic TPE that includes an
MRR and an attenuator, we now incorporate the sign rule and
include full positive and negative numbers for both the input and
weight. The result of full 6-bit signed multiplication is shown
in Fig. 7. Here, both input and weight go from [−31, 31], and
the experimentally measured output is shown as colored contour
maps on the two-dimensional grid of weight versus input. The
measured output values range between (−1000, 1000), and the
standard deviation calculated from the measured outputs is
9.34× 10−6.

The precision adjustment can be easily made at the generation
of the direct mapping stage during calibration. The calibration
starts with weight and reflection sweeps, which will estimate
the usable heating current range for the MRRs. The next step
is to decide how many analog levels we need to represent all
digital values up to the chosen precision. We demonstrated an
11-bit signed system with half-precision for weights and inputs.
However, the system can be easily adapted to lower precision
levels, such as 8-bit signed precision with half-precision for
the weights and inputs. In this case, we only need to redo the
direct mapping for the weights and inputs to accommodate fewer
analog levels.

V. GEMM COMPILER AND SCALABILITY

Having demonstrated the functionality and performance of a
single photonic TPE, we will focus on scaling up our system
to accommodate higher computing capacity and throughput.
Scaling up a processing element architecture generally involves
two approaches: hardware scaling and software scaling.

Fig. 8. Matrix dot product using a GeMM compiler.

A. GeMM Compiler for Photonic TPE

First, we demonstrate our solution for software scaling.
One common software up-scaling approach for tensor proces-
sors is the use of a General Matrix Multiplication (GeMM)
compiler [28], which helps a software to map different ma-
trix operations to specific hardware architectures to optimize
structure utilization and computation efficiency. As the modern
data science industry continues to develop and the computation
volume and complexity increases, most data-focused compute
hardware finds it helpful to implement a dedicated compiler to
efficiently perform sophisticated matrix multiplications. There
are many different designs for GeMM compilers depending
on their targeted hardware platforms [29], [30], [31], but the
basic operating rule for any GeMM compiler focuses on the
most prevalent matrix multiplication, matrix dot product, and
its mathematical form can be expressed as (5),

Y = αW ·X+ βZ. (5)

Here, W, X and Z are input matrices, both α and β are
scaling constants, and Y is the output matrix. The math is
simple, but the main focus of GeMM compilers is mapping the
mathematical expression to the topology of different hardware
platforms. Because the sizes of the matrices from data-focused
tasks often exceed the physical sizes of the actual compute
hardware, GeMM compilers need to first break down these large
matrices into smaller matrices or vectors. How the matrices are
broken down depends on the core/thread count of the actual
hardware, and the overall task of matrix multiplication will be
done in multiple batches. Once the matrices are divided, GeMM
compilers need to send specific values from the current data
batch to the compute units used by the task. After one iteration
of computation is finished, GeMM compilers will then collect
all the results and send out the next batch. As an example, we
have a simple matrix dot product between two matrices W and
X as shown in Fig. 8.

We divided matrix W into four batches each containing four
elements, and matrix X into two batches each containing six
elements. The number of compute units used for this task will
be six, matching the number of elements in the largest data
batch. The GeMM compiler will first send out the first data
batches from both matrix W, W11, and matrix X, X11 to all the
compute units to calculate the dot product W11 ×X11. For the
second round of operation, the GeMM compiler will send out
W12 and X21 instead, and the same procedure is repeated for
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Fig. 9. Accuracy of a matrix dot product computation between two matrices
both of size 128× 128. Here, the color grid on the left shows the computation
accuracy of each element in the output matrix, where white means 100% accurate
and red means the output accuracy is zero.

the third and fourth iterations. Once all input data batches are
cycled through all compute units and the results are collected,
the GeMM compiler then send out the results in two batches to
calculate the elements in the output matrixY. Having calculated
all the elements, the GeMM compiler then reconstructs matrix
Y with all the results and sends it back to the user.

Because of this divide and conquer technique, GeMM com-
pilers have enabled many modern tensor processors to achieve a
compute capability far beyond their physical topology limit with
a high efficiency. Examples of this include NVIDIA’s Tensor
Core [6] and Google’s TPU [7]. Therefore, our software scaling
solution can take full advantage of GeMM compiler’s promises
and enable a high volume computation on a small but efficient
physical architecture.

To demonstrate this idea, we implement a simple GeMM
compiler that can break down large matrices and schedule com-
putation tasks among different MRRs of our photonic tensor
processor. First, we perform a matrix dot product between two
matrices each of size 128× 128 using a photonic TPE consisting
of five MRRs, and all matrix elements are randomly generated
and are encoded using 6-bit signed precision. Since the input
matrices are larger than the size of the photonic TPE, the matrices
are broken down into many vectors each containing five elements
during the many iterations of computation. The output matrix is
shown in Fig. 9, where each pixel on the matrix plot represents
the computational accuracy of each output matrix element from
this single trial, presented in different colors shown on the scale
on the right. Here the accuracy of each element in the output
matrix is calculated as following:

Accuracy = 1− Measured− Target

Measured
. (6)

As shown here, this single trial achieved high accuracy for the
majority of the matrix elements, with only a few exceptions
represented as the red pixels. The average accuracy across all
matrix elements from this trial is 99.71%, with a standard devia-
tion of 0.0285. However, we notice a few elements in the output
matrix that have an accuracy value of zero. This is likely due to
the fact that the expected output for those elements are digital

Fig. 10. Distribution of the matrix dot product accuracy collected from trials
with different matrix sizes, each including 100 computations using randomly
generated matrices. Here, we simulated four different matrix sizes, including (a)
64× 64, (b) 128× 128, (c) 512× 512, and (d) 1024× 1024. We used 6-bit
signed inputs and weights for all the computations.

zeros, but our photonic TPE measures non-zero analog values
at those points. Such behavior indicates that there is noticeable
noise in our photonic circuits, and optimizing our control system
to account for such noise will require further work.

B. System Scalability

Having validated the functionality of the GeMM compiler,
we verify the performance of our photonic tensor processor
using the multi-level encoding scheme, together with the GeMM
compiler. In the first test we vary the sizes of input matrices
from 64× 64 to 1024× 1024 while maintaining the same bit-
precision for all the matrix element as signed 6-bit. We run
the matrix dot product computation with randomly generated
elements for each matrix size 100 times, and collect the average
accuracy of each output matrix into a histogram as shown in
Fig. 10. As shown here, the spread of average computation
accuracy tightens as the matrix size increases, indicating that the
multi-level encoding scheme and our photonic tensor processor
see a performance improvement over larger matrices.

A second test is designed to investigate the performance
change as a result of changing the bit-precision of matrix el-
ements. We start the test using only 3-bit signed values for
all matrix elements, and increase to the original 6-bit signed
precision. The sizes of matrices used in this test are the same
128× 128 for all 100 randomly generated computations, and
the results from the second test are shown in Fig. 11. Here, trials
using only 3-bit signed precision generate the largest spread
of average accuracy, whereas 4-bit signed precision and above
produce comparable results. The results show that multi-level
encoding scheme exhibits the best performance when using
higher bit-precision, but the accuracy slightly decreases for
lower bit-precision.

After performing the two performance tests using different
parameters, we condense the histograms shown in Fig. 10 and
Fig. 11 by calculating the overall average accuracy and its
standard deviation for every 100 trials with a specific parameter
as shown in Fig. 12. Here, Fig. 12(a) shows the overall accuracy

Authorized licensed use limited to: Queen's University. Downloaded on August 24,2022 at 02:16:24 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: MULTI-LEVEL ENCODING AND DECODING IN A SCALABLE PHOTONIC TENSOR PROCESSOR WITH A PHOTONIC GENERAL MATRIX 8300714

Fig. 11. Distribution of the matrix dot product accuracy collected from trials
with different bit-precisions, each including 100 computations using randomly
generated matrices. Here, we simulate four different bit-precisions, including
(a) 3 bits, (b) 4 bits, (c) 5 bits, and (d) 6 bits to encode input values. We used a
matrix size of 128× 128 for all computations.

Fig. 12. (a) Average accuracy and its standard deviation calculated from the
trials with different matrix sizes, as shown in Fig. 10. (b) Average accuracy and
its standard deviation calculated from the trials with different bit precisions, as
shown in Fig. 11.

from the first test using four different matrix sizes, from 64× 64
to 1024× 1024. We see a clear upward trend in the overall
average accuracy as aforementioned, together with a decreasing
trend for the standard deviation from the overall average accu-
racy calculation. For the second test, the overall average accuracy
also increases with higher bit-precision, but we also see a small
increase in standard deviation from the calculation as shown in
Fig. 12(b). Because the change in standard deviation in Fig. 12(b)
is one magnitude smaller than that in Fig. 12(a) and the average
accuracy is similar for trials using more than 3-bit precision, the
small increase in standard deviation can be a random result since
all matrices are randomly generated in all trials. The improved
average accuracy in both performance tests is likely a result of
larger sample size when running randomized trials. Randomized
trials require greater sample sizes to better achieve the ideal
normal distribution of test samples, and as the matrix sizes
increase these test matrices include more randomized values
which contributes to a better test sample distribution. As test
sample distribution approaches the ideal normal distribution,

the accuracy results obtained from such random trials can faith-
fully represent the true accuracy achievable on our photonic
TPE. Therefore, an improved accuracy results over larger test
matrix sizes indicates that our system can achieve above 99.5%
accuracy.

The standard deviation in Fig. 12(b) represents the accuracy
value fluctuation over multiple repeated trials—the increase in
standard deviation results from the noise within our analog
system. At higher precision levels, the same level of analog
noise will be more likely to cause a misrepresentation of each
digital value. Lower precision only requires fewer analog levels
to include all the digital values, whereas higher precision will
require more analog levels within the same analog range. As a
result, the system is more susceptible to noise at higher precision.
We have observed a larger fluctuation in average accuracy values
over multiple tests, leading to a slight increase in the standard
deviation value.

Aside from software scaling, hardware scaling is also a crucial
part in boosting the computation capacity of our photonic tensor
processor. The hardware architecture for a single photonic TPE
is shown in Fig. 1, which contains an array of five MRRs
sharing both a common THRU connection and a common DROP
connection. The photonic TPE is capable of performing five mul-
tiplications simultaneously using five sets of inputs through the
same bus waveguide, each set encodes one number through the
attenuator as the “input” and the other through the source meters
as the “weight”. Thus, the single photonic TPE can compute a
dot product between two vectors each with five elements within
a single iteration. However, this is only one single photonic TPE,
and its architecture can be easily duplicated on chip. In addition,
because different copies of the same photonic TPE have their
own bus waveguide for inputs, the same laser sources can be
used in a multiplexer/splitter fashion to provide the same copies
of all signal carriers for all the photonic TPEs. The multiplexer is
implemented using a WDM multiplexer that combines all the in-
dividual laser sources from separate waveguides, and the splitter
evenly distributes the combined signal among all photonic TPEs.
On the other hand, most hardware scaling solution will benefit
from a higher level of integration for lower latency and higher
compute throughput. In our current design for the photonic TPE,
the input mapping still relies on external attenuators to encode
different input values as different optical power levels. However,
same effect can be achieved by using the THRU port output of
an on-chip MRR. By tuning the MRR on and off resonance, the
THRU port output will carry different output power depending
on the wavelength mismatch between the optical signal and
the MRR. Therefore, by replacing the attenuators with on-chip
MRRs for input encoding, the control mechanism can be applied
to both the input encoding MRRs and the multiplication MRRs.
Additionally, the balanced photodetectors can also be integrated
on chip, and will only require a bias voltage from the external
source meters. The output of the balanced photodetectors is in
the form of different current levels, which can also be monitored
through the same sourcing and measurement units. Thus, both
information encoding and decoding will be uniformly imple-
mented through the external source meters for both inputs and
weights.
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To illustrate this hardware scaling idea, we consider the fol-
lowing design for a scaled-up version of the photonic tensor
processor containing four TPEs, as shown in Fig. 13. Each of
the photonic TPE contains four MRRs with only THRU ports
for input encoding, and another four MRRs with both DROP
and THRU connections for multiplication. Four laser sources
are used to provide carrier signals for each of the input and
multiplication MRR in every TPE. Since each TPE has its own
separate bus waveguide, only four lasers will be required to drive
all four TPEs. The summation of all photonic channels within
each TPE is done by the integrated balanced photodetectors
on chip. Both information encoding and decoding will rely on
source meters to provide either a heating current or a bias voltage,
and to measure the photo current output from the balanced
photodetectors.

The large matrix decomposition and dot product are done
in simulation using the experimental data collected from the
single MRR experiment. However, we have also performed
testing using multiple MRRs and tried to qualitatively observe
the effects of thermal crosstalk between neighboring MRRs.
Our preliminary results showed that the magnitude of thermal
crosstalk mainly depends on the MRR spacing. With a spacing
of around 150 um, the crosstalk effect becomes insignificant
relative to other noise sources within our system. The most
effective way to minimize thermal crosstalk in our system is to
create larger spacing between MRRs; however, this will reduce
the compute density of our device. The other solution will
require extensive calibration to be performed simultaneously
across all active MRRs and sophisticated monitoring procedures
during operation. As a result, the reduced compute speed due to
the added calibration and monitor steps will also hamper the
compute density.

On the other hand, the best solution to thermal crosstalk
would be to eliminate thermal tuning and implement the carrier-
depletion effect. The carrier-depletion effect not only offers a
high tuning speed that can enable fast weight updates but also
generates significantly less heat, allowing for a more compact
photonic TPE design to achieve higher compute density.

C. Estimated Energy Consumption

Our photonic TPE design implements a multi-wavelength
approach that uses multiple MRRs. As a demonstration we
showed the performance and the multi-level encoding/decoding
scheme for a single channel TPE, but for multi-channel TPE de-
signs, each MRR will strictly operate on a separate wavelength.
First we only consider the tuning power during the operation,
which will be the major energy consumption during a photonic
MAC operation. For a small photonic TPE, we assume it has
a size of n× n, giving us a total of n2 MRRs and n balanced
photodetectors for photonic MAC operations. The total number
of MACs per cycle for this small photonic TPE will ben2 MACs,
and the total energy consumption per cycle will be n2 · EMAC

if we assume each MAC consumes energy equals EMAC .Now
we consider a scaled up photonic TPE that is x times larger in
both dimensions compared to the small photonic TPE, giving
us a size of xn× xn = x2 · n2. Under the same assumption

Fig. 13. Scaled-up design of a photonic tensor processor containing four
photonic TPEs, each capable of performing a vector dot product with four
elements simultaneously. All photonic TPEs in this design integrate input
mapping on-chip through the input encoding MRRs, and also retain the same
MRR weight bank design as shown before.

for energy consumption, we arrive at the total energy per cycle
for the larger photonic TPE as x2 · (n2EMAC). If we want to
compute a matrix multiplication between two matrices, both of
size m× l with m ≥ xn and l ≥ xn, then it will take ml cycles
to complete the operation on the small TPE, whereas it only
takes ml

x2 cycles on the scaled-up TPE. If we compute the total
energy consumed by tuning the MRRs during the operation, the
total energy will be identical since the total workload remains
the same.

Next, we will consider the I/O energy consumption in our
system. For the larger scale system concept shown in Fig. 13, we
chose to use one set of input encoding MRRs for each TPE. As a
result, the actual tuning power on the input encoding process will
scale linearly with the input matrix size, which is on the same
order of magnitude scaling as compared to the photonic MAC.
However, we only implement one set of balanced photodetector
for accumulating all the computed results. Therefore, the energy
consumption scaling for the output optoelectrical conversion
will be sublinear compared to the input and weight matrix sizes.
If we break down the input and output energy consumption for a
single photonic MAC, the input energy consumption per MAC
will not decrease for larger photonic TPEs, but the output en-
ergy consumption per MAC will decrease significantly. Recent
investigation by Al-Qadasi et al. [32] has also quantified this
estimation, where for a thermally tuned MRR-based photonic
TPE, the energy per MAC was calculated to be around 1.2
pJ/OP for a network size of 15 MRRs. The energy per MAC
will decrease to around 1 pJ/OP for a larger network size of 85
MRRs. However, if we can improve the thermal tuning design
by adding insulators to the heaters inside the MRRs, the energy
per MAC can drop significantly down to around 0.3 pJ/OP for
the smaller network size of 15 MRRs, and down to less than 0.1
pJ/OP for the larger network size of 85 MRRs.

Therefore, the total energy consumption will be the slightly
less for the large TPE to complete the same workload as the
output optoelectrical conversion will be more efficient. However,
the small improvement in energy per MAC is outmatched by
improved designs of the heaters, and as a result the overall
energy consumption for both the small and the large systems
are similar. The main difference between operating the small
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and the large TPEs comes from the number of cycles required
and how the energy consumption is distributed over time. Here,
the larger photonic TPE will require more energy within a short
time window, whereas the small TPE uses much less energy per
cycle and spread out the energy consumption over longer periods
of time.

VI. SPEED AND PRECISION ANALYSIS

The MRRs shown in Fig. 1 implemented thermal tuning using
N-doped heaters, and our photodetectors were SiGe-based PIN
junction photodetectors. The tuning speed of N-doped heaters is
up to millisecond scale, which can be a limitation in certain sce-
narios and applications. However, in many other deep learning
applications the update rate of the weights can be much slower,
especially during inference or convolutions. During inference,
the photonic TPE will be loaded with pre-trained weights. Thus,
the photonic TPE can perform MAC operations at the speed
limit of the photodetectors, which is shown to be 56 GHz
for an avalanche photodetector [33] and 67 GHz for a PIN
photodetector [34]. In case of convolutions as demonstrated by
Feldman et al. [22], the convolution filters only require a slower
update rate compared to the inputs. Therefore, the relatively slow
tuning speed of the weights inside the photonic TPE can satisfy
a high-speed MAC operation for inference or convolution.

However, in the case of matrix tiling the photonic TPE compu-
tation speed will also be limited by the weight updates. Because
we are using a wavelength-multiplexed approach, the speed
bottleneck for our system during a matrix tiling process will be
affected by three factors: weight update speed, detection speed,
and the physical size of our photonic TPE. The weight update
speed determines how fast the photonic TPE can be updated for
the next batch of weights. The detection speed determines how
fast the TPE can process all batches of inputs before adjusting
the weights. The size of the photonic TPE will affect the number
of input batches per weight batch. In a wavelength-multiplexed
setup where a single balanced photodetector is paired with
multiple MRRs, we can increase the number of MRRs as long as
their resonances can all fit within their free spectral ranges. With
more MRRs in the weight bank, large matrices require less tiling
to finish the computation. Also, we can implement data batching
and the weights inside the photonic TPE will not be updated until
all the inputs have been processed through the TPE. Therefore,
larger photonic TPEs will go through all the inputs using fewer
cycles and require more often weight updates when compared to
smaller ones. As a result, smaller TPEs rely more on the speed
of the photodetector to process all the inputs, but larger TPEs
rely more on the weight update speed of the MRRs once all the
inputs are processed.

Given these three factors that bottleneck the speed of our
photonic TPE, there will be an optimal photonic TPE size that
balances the latency between weight updates and photodetec-
tion. Currently, we are using the thermo-optic effect in our
system, which operates on a millisecond time scale, and the
photodetectors in our system have been verified to achieve
10 GHz. Assuming thermal tuning, the MRRs take 1 ms, then
the optimal size for our photonic TPE can have no more than a
single MRR per pair of balanced photodetectors for a matrix with

a size of 1024× 1024. In this scenario, the speed of photonic
TPE is bottlenecked by the weight update speed because the
photodetector is 107 times faster than the thermally tuned MRRs.
However, suppose we were to use the carrier-depletion effect to
modulate the optimal photonic weights at up to 56 GHz and
use a fast PIN photodetector that operates at 67 GHz. In that
case, TPE size will consist of around 850 MRRs. In conclusion,
thermal tuning the MRR will create a speed bottleneck from
weight updates during matrix tiling, but narrowing the speed
gap between weight modulation and photodetection will require
larger photonic TPE sizes to take full advantage of that fast
weight update capability.

Recent analysis on signal resolution in silicon photonic neural
network by Tait [35] summarizes the relation between laser
pump power, signal frequency, and bit precision. In the middle of
all three terms are different dominating types of noise in different
operating regimes of the silicon photonic system. Our silicon
photonic system implements an O/E/O operating regime, where
the first part is the optical signal from a tunable laser, and then
optical weighting uses MRR weight banks with thermal tuning.
After the weight bank is the optoelectrical conversion by the
balanced photodetector. For such a photonic circuit, there are
three major noise regimes that affect the interaction between
laser pump power, signal frequency, and bit precision: thermal
regime, shot regime, and relative intensity noise (RIN) regime.
In the thermal regime, the dominant noise is known as Johnson-
Nyquist noise which comes from the random movement of
electrons within the photodetector. Here, the noise equivalent
power increases exponentially with higher bit precision, and the
relation between laser pump power Pltherm

, signal frequency f ,
and bit precision in thermal regime B can be written as:

Pltherm
(f,B) =

√
f · J

∗(B)

ηnet
, J∗(B) ∝ 2

3
2B . (7)

Here, ηnet is the transmission efficiency of our photonic
circuit, and J∗ represents the Johnson-Nyquist noise at the given
precision B. During the operation of the MRR weight bank
inside our photonic TPE, the input laser pump power will remain
a constant value. As is shown here, there is a trade-off between
signal frequency and the bit precision of our system at a given
laser pump power level. Thus, higher frequency operations will
require lower bit precision to maintain system stability.

During the optoelectrical conversion, photon shot noise will
be the dominant noise and this is called shot noise regime. Shot
noise comes from the randomness in photon detection, and in
this regime we still have the same relation between laser pump
powerPlshot

, signal frequency f , and bit precisionB as is shown
in the thermal regime. Here we have:

Plshot
(f,B) = f · Eshot(B)

ηnet
, Eshot(B) ∝ 23B . (8)

As shown here, the same trade-off between signal frequency
and bit precision still remains. In addition to thermal and shot
noise regimes, the carrier laser power output also has random
changes that create relative intensity noise. In RIN regime, the
noise is independent of laser pump power, but the frequency-
precision relation gives us the maximum signal frequency that
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Fig. 14. The trade-off between operating frequency and precision under a
constant laser pump power of 10 mW, and a round trip loss of 15 dB. The
transmission efficiency was taken to be 0.1, and we consider both thermal regime
and shot noise regime. For the thermal regime, we consider the situation where
we are using less than the full designed bandwidth for our single channel. For
the shot noise regime, we consider the shot noise amplitude in a typical analog
photonic system, which will be larger than the noise amplitude in the an ideal
system nearing its physical limit.

can be obtained at a certain bit precision:

f ≤ FRIN (B), FRIN (B) ∝ 2−3B . (9)

Therefore, the signal frequency has a device-specific upper limit
at any given bit precision, and the upper limit is independent of
laser pump power.

To demonstrate the aforementioned trade-off between op-
erating frequency and precision under a constant laser pump
power of 10 mW and with a 15 dB round trip loss, we plot the
operating frequency and the expected precision in both thermal
and shot noise regimes as is shown in Fig. 14. Here, we chose
a transmission efficiency of 0.1 for our analog photonic circuit,
and we included a wide range of frequency values ranging from
1 Hz to 10 GHz. As shown in Fig 14, the trade-off between
operating frequency and precision is well pronounced and the
thermal regime contributed to the upper limit for our system
precision across all frequency values.

In this paper we demonstrate a single channel system, but we
can also scale up our photonic TPE by adding more MRRs and
more rails to perform more operations simultaneously. Similar
structures for this scale-up idea can be found in the paper
by Bangari et al. [11]. However, if we were to scale up our
photonic TPE to include multiple channels, then we will need
to include noise added by fan-in and fan-out effects. These
effects can be categorized into three subcategories: singular case
(with only one non-zero input), uncorrelated case (all inputs
are independent), identical case (all inputs are same). More
specifically, the correlation of inputs affects fan-in gain and
therefore signal-to-noise ratio (SNR) [35]. When considering
fan-out loss in a multi-channel system, signal root mean square
(RMS) value and SNR decrease proportionally. However, ac-
counting for fan-in gain, SNR only increases sub-linearly which
results in an overall decrease of signal RMS with more channels.
Therefore, laser input power needs to increase sub-linearly to
maintain the same level of SNR with more channels. As a
result, with the same optical input power and precision level, we

Fig. 15. The frequency-precision trade-off comparison between multiple pho-
tonic systems with different components. In this paper, the photonic TPE design
implemented grating couplers (GC), MRRs with N-doped heaters (N-doped
MRR), and PIN junction photodetectors (PIN PD). However, recent work
has shown that we can replace these components with ones that have higher
efficiency and speed, like photonic wirebonds (PWB), PIN junction modulators
(PIN mod), and avalanche photodetectors (APD). This plot gave an estimation
on how the frequency-precision trade-off will look like compared to our current
design, and we will be implementing these more advanced components in our
future designs.

should expect the max frequency to drop with more channels
due to the additional MRRs, and the fan-in and fan-out effects
on different types of noises. In addition, extra MRRs on the bus
waveguide will introduce an insertion loss to all signals, but this
loss is only measured at around 0.01 dB per MRR when it is off
resonance [36].

On the other hand, we have been using grating couplers
for optical coupling on our chips and the N-doped heaters on
the MRRs for thermal tuning the weight bank. As previously
mentioned, grating couplers have a high insertion loss at around
15 dB, but recent work has already shown that photonic wire-
bonds can be implemented reliably for a much more efficient
on/off chip coupling. The round trip loss of a photonic device
using photonic wirebonds can be as low as 2 dB [37], which
greatly increases the available precision at any given frequency.
As shown in Fig 15, by replacing grating couplers for photonic
wirebonds, we can achieve up to a 3-bit improvement on the
precision across all frequencies. Simultaneously, we can replace
the N-doped MRRs with PIN junction modulators for higher
speed modulation using carrier depletion effect [17]. Moreover,
our analog photonic circuit operate with low laser pump power to
avoid nonlinearities during weighting. At low laser pump power,
if we were to implement an avalanche photodetector that has
active avalanche gain in our current designs, and we can further
reduce the thermal noise inside the photodetectors. By replacing
the PIN photodetectors with avalanche photodetectors, we can
receive a further improvement of around 2 bits on the available
precision across all frequencies.

VII. CONCLUSION

We have demonstrated the proposed multi-level encod-
ing/decoding scheme for an MRR-based photonic TPE, and
the experimental results have verified the feasibility of such
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implementation. We have also noted some unique characteristics
of the photonic TPE architecture, and by taking advantages
of its flexibility we have refined and improved the details of
the multi-level encoding scheme. We also combined multi-level
encoding scheme with a simple GeMM compiler, and explored
the scalability of our photonic tensor processor. The results from
larger scale matrix computations have verified that the proposed
multi-level encoding scheme can achieve a high level of compu-
tational accuracy while providing up to 6-bit signed precision.
Combining the multi-level encoding/decoding scheme with a
GeMM compiler can serve as the operation foundation allowing
us to explore larger-scale ML applications using MRR-based
photonic tensor processors.
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